
- •Поняття та класифікація нетрадиційних джерел енергії
- •Нетрадиційні джерела електричної енергії
- •3. Енергетична характеристика сонячного випромінення
- •4. Сонячна теплоенергетика
- •5. Сонячна фотоенергетика
- •6. Енергетична характеристика вітру
- •7. Вітроенергетика, основи перетворення енергії вітру
- •8. Пряме спалювання біомаси
- •9. Термохімічне перетворення біомаси
- •10. Біологічні способи виробництва палив з біомаси
- •11. Енергетична характеристика геотермальних потоків землі
- •12. Геотермальне теплопостачання, використання теплових насосів
- •13. Мала гідроенергетика
- •Источники энергии для малой гидроэнергетики являются:
- •Где можно установить небольшую гидроэлектростанцию?
- •К вопросу экологии
- •14. Способи акумулювання енергії
5. Сонячна фотоенергетика
Солнечная фотоэнергетика представляет собой прямое преобразование солнечной радиации в электрическую энергию. Принцип действия фотоэлектрического преобразователя основывается на использовании внутреннего фотоэффекта в полупроводниках и эффекта деления фотогенерированных носителей зарядов (электронов и дырок) электронно-дырочным переходом или потенциальным барьером типа металл–диэлектрик–полупроводник. Фотоэффект имеет место, когда фотон (световой луч) падает на элемент из двух материалов с разным типом электрической проводимости (дырочной или электронной). Попав в такой материал, фотон выбивает электрон из его среды, образуя свободный отрицательный заряд и «дырку». В результате равновесие так называемого p – n -перехода нарушается и в цепи возникает электрический ток.
Чувствительность фотоэлемента зависит от длины волны падающего света и прозрачности верхнего слоя элемента. В ясную погоду кремниевые элементы вырабатывают электрический ток приблизительно силой 25 мА при напряжении 0,5 В на 1 см 2 площади элемента, то есть 12–13 мВт/см 2 . Теоретическая эффективность кремниевых элементов составляет около 28%, практическая – от 14 до 20%.
При последовательно-параллельных соединениях солнечные элементы образуют солнечную (фотоэлектрическую) батарею. Мощность солнечных батарей, которые серийно выпускаются промышленностью, составляет 50–200 Вт. На солнечных фотоэлектрических станциях солнечные батареи используются для создания фотоэлектрических генераторов. Срок службы такой станции составляет 20–30 лет, а эксплуатационные затраты минимальные.
Недостатками плоских фотоэлементов для получения электрической энергии являются их высокая стоимость (до 5 дол.США/Вт) и значительные площади, необходимые для размещения фотоэлектростанции.
Одним из путей совершенствования фотоэнергетики является создание концентрирующих фотоэлементов. Система концентрации солнечной энергии состоит непосредственно из концентраторов и системы слежения за положением Солнца, так как концентрирующие фотоэлементы воспринимают только прямое солнечное излучение.
Сегодня основой для создания концентрируемых солнечных элементов служит кремний. Так, на основе кремния в Австралии созданы элементы со степенью концентрации k =11 и к.п.д. 21,6%, в США выпускаются кремниевые элементы с k =40 и к.п.д. 20%.
Для повышения эффективности фотоэлектрического преобразования солнечной энергии в качестве исходного материала применяют арсенид галлия, фотоэлектрические потери которого при высоких температурах значительно ниже, чем у кремния.
Один из эффективных способов использования фотоэлементов – фотоэлектрический транспорт. Многие фирмы создают автомобили на солнечных фотоэлементах.
Существенным недостатком существующих солнечных энергетических установок является неравномерность их работы, что связано с изменением потока солнечного излучения, достигающего поверхности Земли, вызванного погодными условиями, сменой времен года и временем суток.