Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры_ЭМ.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
6.22 Mб
Скачать

33.Глубокопазный асинхронный двигатель.

От обычного асин­хронного двигателя этот двигатель отличается тем, что у него пазы ротора сделаны в виде узких глубоких щелей, в которые вложены стержни обмотки ротора, представляющие собой узкие полосы. С обеих сторон эти стержни приварены к замыкающим кольцам Обычно глубокий паз имеет соотношение размеров hп/bп=9÷10, где hп, bп - высота и ширина паза.

В момент включения двигателя, когда частота тока в роторе имеет наибольшее значение (f2= f1), индуктивное сопротивление нижней части каждого стержня значительно больше верхней. Объясняется это тем, что нижняя часть стержня сцеплена с большим числом магнитных силовых линий поля рассеяния. На рис. 1,б показан график распределения плотности пускового тока в стержне ротора с глубокими пазами по высоте стержня. Из этого графика следует, что почти весь ток ротора проходит по верхней части стержня, поперечное сечение которой намного меньше сечения всего стержня. Это равноценно увеличению активного сопротивления стержня ротора, что, как известно, способствует росту пускового момента двигателя и некоторому ограничению пускового тока. Таким образом, двигатель с глубокими пазами на роторе обладает благоприятным соотношением пусковых параметров: большим пусковым моментом при сравнительно небольшом пус­ковом токе. По мере нарастания частоты вращения ротора ча­стота тока в роторе убывает (f2=sf1). В связи с этим умень­шается индуктивное сопротивление обмотки ротора x2≡f2. Рас­пределение плотности тока по высоте стержня в том случае становится более равномерным, что ведет к уменьшению актив­ного сопротивления ротора. При работе двигателя с номинальной частотой вращения, когда f2«f1 процесс «вытеснения» тока практически прекращается и двигатель работает, как обычный короткозамкнутый.

Рис. 1. Ротор с глубокими пазами:

б — распределение плотности тока ротора по высоте стержня при пуске и при работе двигателя

Эффект вытеснения тока хорошо проявляется при пазах ро­тора бутылочной формы (рис. 2). В этом случае «вы­теснение» тока происходит в верхнюю часть паза, имеющую меньшее сечение, а следовательно, большее активное сопротив­ление. Применение пазов бутылочной формы позволяет сократить высоту пазов ротора, а следовательно, умень­шить диаметр ротора по сравнению с глубокопазным ротором.

Рис. 2. Буты­лочная форма стержней рото­ра

34. Принцип работы и устройство синхронных машин (гидрогенератор)

Синхронная машина состоит из неподвижной части — статора — и вращающейся части — ротора. Статоры синхронных машин в принципе не отличаются от статоров асинхронных двигателей, т.е. состоят из корпуса, сердечника и обмотки Конструктивное исполнение статора синхронной машины может быть различным в зависимости от назначения и габаритов машины. Так, в многополюсных машинах большой мощности при наружном диаметре сердечника статора более 900 мм пластины сердечника делают из отдельных сегментов, которые при сборке образуют цилиндр сердечника статора. Корпуса статоров крупногабаритных машин делают разъемными, что необходимо для удобства транспортировки и монтажа этих машин. Роторы синхронных машин могут иметь две принципиально различающиеся конструкции: явнополюсную и неявнополюсную. В энергетических установках по производству электроэнергии переменного тока в качестве первичных (приводных) двигателей синхронных генераторов применяют в основном три вида двигателей: паровые турбины, гидравлические турбины либо двигатели внутреннего сгорания (дизели). Применение любого из перечисленных двигателей принципиально влияет на конструкцию синхронного генератора. Если приводным двигателем является гидравлическая турбина, то синхронный генератор называют гидрогенератором. Гидравлическая турбина обычно развивает небольшую частоту вращения (60—500 об/мин), поэтому для получения переменного тока промышленной частоты (50Гц) в гидрогенераторе применяют ротор с большим числом полюсов. Роторы гидрогенераторов имеют явнополюсную конструкцию, т.е. с явно выраженными полюсами, при которой каждый полюс выполняют в виде отдельного узла, состоящего из сердечника 1, полюсного наконечника 2 и полюсной катушки 3 (рисунок 1). Все полюсы ротора закреплены на ободе 4, являющемся также и ярмом магнитной системы машины, в котором замыкаются потоки полюсов. Гидрогенераторы обычно изготовляются с вертикальным расположением вала. Паровая турбина работает при большой частоте вращения, поэтому приводимый ею во вращение генератор, называемый турбогенератором, является быстроходной синхронной машиной. Роторы этих генераторов выполняют либо двухполюсными (n1=3000об/мин), либо четырехполюсными (n1= 1500 об/мин).

35. Принцип действия и устройство турбогенератора Для выработки электроэнергии на современных электрических станциях применяют синхронные генераторы трехфазного переменного тока. Различают турбогенераторы (первичный двигатель – паровая или газовая турбина) и гидрогенераторы (первичный двигатель - гидротурбина). Для синхронных электрических машин в установившемся режиме работы имеется строгое соответствие между частотой вращения агрегата n, об/мин, и частотой сети f, Гц: где p – число пар полюсов обмотки статора генератора. Паровые и газовые турбины выпускают на большие частоты вращения (3000 и 1500 об/мин), так как при этом турбоагрегаты имеют наилучшие технико-экономические показатели. Быстроходность турбогенератора определяет особенности его конструкции. Эти генераторы выполняются с горизонтальным валом. Ротор турбогенератора, работающий при больших механических и тепловых нагрузках, изготавливаются из цельной поковки специальной стали (хромоникелевой или хромоникельмолибденовой), обладающей высокими магнитными и механическими свойствами. Ротор выполняется неявнополюсным. Вследствие значительной частоты вращения диаметр ротора ограничивается по соображениям механической прочности до 1,1 – 1,2 м при 3000 об/мин. Длина бочки ротора также имеет предельное значение, равное 6 – 6,5 м. Определяется оно из условий допустимого статического прогиба вала и получения приемлемых вибрационных характеристик. В активной части ротора, по которой проходит основной магнитный поток, фрезеруются пазы, заполняемые катушками обмотки возбуждения. В пазовой части обмотки закрепляются немагнитными легкими, но прочными клиньями из дюралюминия. Лобовая часть обмотки, не лежащая в пазах, предохраняется от смещения под действием центробежных сил с помощью бандажа. Бандажи являются наиболее напряженными в механическом отношении частями ротора и обычно выполняются из немагнитной высокопрочной стали. По обеим сторонам ротора на его валу устанавливаются вентиляторы, обеспечивающие циркуляцию охлаждающего газа в машине. Статор турбогенератора состоит из корпуса и сердечника. Корпус изготавливается сварным, с торцов он закрывается щитами с уплотнениями в местах стыка с другими частями. Сердечник статора набирается из изолированных листов электротехнической стали толщиной 0,5 мм. Листы набирают пакетами, между которыми оставляют вентиляционные каналы. В пазы, имеющиеся во внутренней расточке сердечника, укладывается трехфазная обмотка, обычно двухслойная.

Во время работы синхронного генератора его обмотки и активная сталь нагреваются. Допустимые температуры нагрева обмоток статора и ротора зависят в первую очередь от применяемых изоляционных материалов и температуры охлаждения среды. По способу отвода тепла от нагретых обмоток статора и ротора различают косвенное и непосредственное охлаждение. При косвенном охлаждении охлаждающий газ (воздух или водород) с помощью вентиляторов, встроенных в торцы ротора, подается внутрь генератора и прогоняется через немагнитный зазор и вентиляционные каналы. При этом охлаждающий газ не соприкасается с проводниками обмоток статора и ротора и тепло, выделяемое ими, передается газу через значительный «тепловой барьер» - изоляцию обмоток. При непосредственном охлаждении охлаждающее вещество (газ или жидкость) соприкасается с проводником обмоток генератора, минуя изоляцию и сталь зубцов, т. е. непосредственно. Преимущество водородного охлаждения: во-первых оно эффективней воздушного, так как водород как охлаждающий газ по сравнению с воздухом имеет ряд существенных преимуществ. Он имеет в 1,51 раза больший коэффициент теплопередачи, в 7 раз более высокую теплопроводность. Последнее обстоятельство предопределяет малое тепловое сопротивление прослоек водорода в изоляции и зазорах пазов. Значительно меньшая плотность водорода по сравнению с воздухом позволяет уменьшить вентиляционные потери в 8 – 10 раз, в результате чего к.п.д. генератора увеличивается на 0,8 – 1%. Отсутствие окисления изоляции в среде водорода по сравнению с воздушной средой повышает надежность работы генератора и увеличивает срок службы изоляции обмоток. К достоинствам водорода относится и то, что он не поддерживает горения, поэтому в генераторах с водородным охлаждением можно отказаться от устройства пожаротушения. Недостатки водородного охлаждения: водород, заполняющий генератор в смеси с воздухом, образует взрывоопасную смесь, поэтому у машин с водородным охлаждением должна быть обеспечена высокая газоплотность корпуса статора масляными уплотнениями вала, уплотнением токопроводов к обмоткам статора и ротора и т. д. Чем выше избыточное давление водорода, тем эффективнее охлаждение генератора, и, следовательно, при одних и тех же размерах генератора можно увеличить его номинальную мощность. Однако при избыточном давлении более 0,4 – 0,6 МПа прирост мощности генератора не оправдывает затрат на преодоление возникающих при этом технических трудностей (усложнение работы уплотнений и изоляции обмоток). Поэтому давление водорода в современных генераторах более 0,6 МПа не применяется.

36-37 Векторная диаграмма синхронной явнополюсной машины при RL-RC нагрузке.

Воспользовавшись уравнением ЭДС построим векторную диаграмму явнополюсного синхронного генератора, работающего на RL нагрузку (ток I1 отстаёт по фазе от ЭДС E0). Векторную диаграмму строят на основании следующих данных: ЭДС генератора в режиме х.х. E0; тока нагрузки I1 и его угла сдвига ψ1 относительно ЭДС E0; продольного хad и поперечного хaq индуктивных сопротивлений реакции якоря; активного сопротивления фазной обмотки статора r1. При симметричной нагрузке генератора диаграмму строят лишь для одной фазы. Построение RL: В произвольном направлении откладываем вектор ЭДС E0 и под углом 1 к нему – вектор тока I1. Последний разложим на состовляющие: реактивную Id=I1sinψ1 и активную Iq=I1cosψ1. Далее, из конца вектора E0 откладываем векторы ЭДС E1d=-jIdxad; E1q=-jIqxaq; Eσ1=-jI1x1; Ua1=-I1r1. Соединив конец вектора Ua1 с точкой О, получим вектор напряжения U1, значение которого равно геометрической сумме векторов ЭДС. При построении векторной диаграммы генератора, работающего на RC нагрузку (ток I1 опережает по фазе ЭДС E0), вектор тока I1 откладывают влево от вектора ЭДС, а направление вектора E1d, так как при ёмкостном характере нагрузки реакция якоря имеет подмагничивающий характер. В остальном порядок построения остаётся прежним.

38-39. Векторная диаграмма неявнополюсной синхронной машины при RC и RL

Векторную диаграмму синхронного неявнополюсного генератора строят на основании уравнения(1)

Ủ1=∑E – I1r1=Eo+Ec.

при этом вектор Eo откладывают под углом ψ1 к вектору тока I1 рисунок (в)

Следует отметить , что построенные векторные диаграммы не учитывают векторные насыщения магнитной цепи, поэтому отражают лишь качественную сторону явлений. Но тем не менее эти диаграммы дают возможность сделать следующие выводы: основным фактором влияющим на изменение напряжения нагруженного генератора, является продольная составляющая магнитного потока якоря, создающая ЭДС Еad; при работе генератора на активно индуктивную нагрузку т.е. с током I1, отстающим по фазе от ЭДС Eo, напряжение на выводах обмотки статора Ủ1 с увеличением нагрузки уменьшается, что объяснятся размагничивающим влиянием реакции якоря. При работе генератора на активно – ёмкостную нагрузку ( с током I1 опережающим по фазе ЭДС, Eo) напряжение Ủ1 с увеличением нагрузки повышается, что объясняется подманичивающим влиянием реакции якоря. Рисунок (г)

40-43. Теорема Блонделя. Продольное намагничивающее и размагничивающее поле реакции якоря синхронной машины.

При нагрузке обмотки якоря синхронной машины током она создает собственное магнитное поле, которое называется полем реакции якоря.

В нормальных машинах постоянного тока, с установкой щеток на геометрической нейтрали, поле реакции якоря является попе­речным, т. е. действует поперек оси главных полюсов. Поэтому оно не индуктирует ЭДС в обмотке якоря и оказывает относительно слабое влияние на величину потока в воздушном зазоре и на ха­рактеристики машины. В отличие от машин постоянного тока в синхронной машине влияние реакции якоря на величину магнит­ного потока весьма значительно. Это обусловлено прежде всего тем, что в синхронной машине в общем случае возникает также значи­тельная продольная реакция якоря усиливающая или ослабляющая поток полюсов. Кроме того, поле поперечной реакции якоря син­хронной машины также индуктирует значительную ЭДС в обмотке якоря.

Поэтому реакция якоря синхронной машины оказывает весьма значительное влияние на характеристики и поведение синхрон­ной машины как при установившихся, так и при переходных режимах работы.

Метод двух реакций основан на принципе наложения, при котором предполагается, что магнитные потоки, действующие по поперечной оси, не влияют на величину потоков, действующих по продольной оси, и наоборот.

Продольная и поперечная реакция якоря. Рассмотрим действие реакции якоря многофазной синхронной машины при установив­шейся симметричной нагрузке (рисунок 3.3). Для наглядности будем иметь в виду двухполюсную машину и предположим, что она ра­ботает в режиме генератора. Получаемые результаты нетрудно рас­пространить также на двигательный режим работы. Ради простоты и наглядности на рисунке 3.3 каждая фаза обмотки изображена в виде одного витка с полным шагом X, В У, С — Z), буквами N, S указана полярность поля возбуждения, а магнитные линии этого поля не показаны.

Рисунок 3.3 Поперечная (а), продольная размагничивающая (б) и

продольная намагничивающая (в) реакция якоря синхронной машины

Сначала рассмотрим случай, когда угол сдвига фаз между током якоря İ и э. д. с. Ė, индуктируемой в обмотке якоря током или полем возбуждения, равен нулю (рис. 32-9, а). Ротор вращается с электрической угловой скоростью

и при положении ротора, изображенном на рисунке 3.3,а, ЭДС фазы А максимальна. Так как угол = 0, то ток этой фазы также максимален и

Направления ЭДС нетрудно установить по правилу правой руки, и они указаны на рисунке 3.3, а крестиками и точками. Направления токов ia, ib, ic зависит от характера нагрузки и в данном случае совпадают с направлением ЭДС При этих направлениях токов магнитные линии поля реакции якоря в полюсах и теле якоря направлены, как показано на рисунке 3.3, а, поперек оси полюсов d. Следовательно, поток реакции якоря Фа действует по поперечной оси. Такой характер поля реакции якоря при =0 сохраняется при любом положении вращающегося ро­тора, так как ротор и поле реакции якоря вращаются синхронно.

Следовательно, при =0 реакция якоря синхронной машины является чисто поперечной.

Поперечная реакция якоря вызывает искажение кривой поля в воздушном зазоре, как и в машинах постоянного тока, но в син­хронной машине действие ее не ограничивается этим, так как вра­щающееся поле поперечной реакции якоря индуктирует также ЭДС в обмотке якоря. Величина этой ЭДС определяется ниже.

Если ток İ отстает от э. д. с. Ė на = 90°, то максимум тока в фазе А наступает по сравне­нию со случаем на рис. 32-9,а на четверть периода позднее, когда ротор повернется на 90° по часовой стрелке (рис. 32-9, б). Токи фаз на рисунке 3.3, б имеют такие же значения, как и на рисунке 3.3, а, вследствие чего и ориентация магнитного пото­ка якоря в пространстве является такой же.

Как видно из рисунка 3.3, б, при отстающем токе и =90° реакция якоря действует по продольной оси и является по отношению к полю возбуждения чисто размагничивающей (продольная размагничивающая реакция якоря).

Если ток İ опережает ЭДС Ė на =-90°, то максимум тока в фазе А наступает по сравнению со случаем на рисунке 3.3, а на чет­верть периода раньше и в этот момент времени ротор занимает по сравнению с рисунком 3.3, а положение, повернутое на 90° против направления вращения (рисунок 3.3, в). Токи фаз на рисунке 3.3, б имеют такие же значения, как и на рисунке 3.3, а.

Из рисунка 3.3, в видно, что при опережающем токе и =-90°, реакция якоря также действует по продольной оси, но является по отношению к полю возбуждения чисто намагничивающей, т.е. она увеличивает поток по продольной оси машины (продольная намагничивающая реакция якоря).

Как следует из рисунка 3.3,а ток İ совпадающий по фазе с ЭДС Ė, создает поперечную реакцию якоря, а ток İ, сдвинутый относи­тельно Ė на =90°, создает продольную реакцию якоря.

Id=I sin; Id= I cos. (3.1)

Поэтому в общем случае, когда и  90°, ток İ можно разложить на две составляющие (рисунок 3.4): первая из которых называется продольной состав­ляющей тока или продольным током якоря и создает продольную реакцию якоря, а вторая называется поперечной составляющей тока или попе­речным током якоря и создает поперечную реакцию якоря. Угол считается положительным, когда İ отстает от Ė.

Магнитные поля и ЭДС продольной и поперечной реакции якоря. Рассмотрим основные гармоники м.д.с якоря при симметрич­ной нагрузке

Продольный ток Id создает продольную м.д.с якоря с амплитудой

а поперечный ток Iq создает поперечную м.д.с якоря с амплитудой

Н. с. Fad и Faq можно также рассматривать как составляющие полной н. с. якоря

по осям dиq, причем

Магнитодвижущие силы реакции якоря по продольной Fd и поперечной Fq осям создают в магнитопроводе синхронной ма­шины магнитные потоки реакции якоря. Основные гармоники этих потоков: по продольной оси Фd и по поперечной оси Фq.

В неявнополюсной машине воздушный зазор по периметру расточки статора равномерен, а поэтому магнитные сопротивления по продольной и поперечной осям равны.

Магнитные потоки реакции якоря, сцепляясь с обмоткой ста­тора, наводят в этой обмотке ЭДС реакции якоря:

по продольной оси Ėd=-jİdxad и по поперечной оси Ėq=-jĖqxaq.

Здесь и xaq — индуктивные сопротивления реакции якоря явнополюсной машины по продольной оси и по поперечной оси.

xd =xad+x, xaq= xaq +x - синхронные индуктивные сопротивления явнополюсной машины по продольной оси и по поперечной оси.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]