
- •1.Механикалық қозғалыс.Механикалық жүйе.Механиканың негізгі моделі:материалдық нүкте,қатты дене,тұтас орта.
- •2.Механиканың негізгі ұғымдары:радиус-вектор, траектория, орын ауыстыру, жол.
- •3.Механиканың негізгі ұғымдары: жылдамдық, орташа жəне лездік жылдамдық.
- •4. Материалық нүктенің қозғалыс теңдеуі: бірқалыпты түзу сызықты қозғалыс.Жылдамдықтарды қосудың классикалық заңы.
- •6. Үдеу.Үдеудің нормал жəне тангенциал құраушылары. Толық үдеу.
- •7. Қисық сызықты қозғалыстағы жылдамдық жəне үдеу.
- •8. Айналмалы қозғалыс. Бұрыштық жылдамдық жəне бұрыштық үдеу.
- •9. Механикадағы күштер: ауырлық күші жəне дененің салмағы.
- •13.Ньютонның заңдары.
- •15. Қозғалмайтын оське қатысты қатты дененің айналмалы қозғалыс динамикасының негізгі теңдеуі. Штейнер формуласы.
- •17.Механикалық жұмыс және қуат
- •20.Ламинарлық және турбуленттік ағыс. Үзіліссіздік теңдеуі. Бернулли теңдеуі.
- •22.Механикалық тербелістер. Математикалық маятник.
- •23.Серіппелі маятник.Физикалық маятник.
- •24. Еркін гармониялық тербелістер. Гармониялық тербелістің қозғалыс теңдеуі.Гармоникалық тербелістерді қосу.
- •25. Еріксіз тербелістер, амплитудасы жəне тербеліс фазасы. Механиканикалық
- •26. Толқындар. Толқынның түрлері. Толқындардың негізгі сипаттамалары. Допплер эффектісі
- •30. Адиабаталық процесс. Пуассон теңдеуі
- •31.Идеал газ. Идеал газ күйінің теңдеуі .
- •32.Iшкi энергия. Термодинамикалық жұмыс және Жылу мөлшерi
- •33.Термодинамиканың бірінші бастамасы
- •34.Изопроцесстер және олардың графиктері
- •35. Идеал газдың жылусыйымдылығы.
- •36. .Пайдалы әсер коеффициенті.Термодинамиканың екінші бастамасы.
- •37. Тасымал құбылыстары.Жылу өткізгіштік.
- •38.Нақты(реал) газдар.Ван-дер-Валльс теңдеуі.
- •40.Электр заряды.Электр зарядының сақталу заңы. Кулон заңы.Электр өрісі.
- •42. Электр өрісіндегі өткізгіштер. Электр сыйымдылық. Конденсаторларды
- •44.Тұрақты электр тоғы. Тізбек бөлігіне арналған Ом заңы.Толық тізбекке арналған Ом заңы. Электр қозғаушы күш.
- •45. Джоуль-Ленц заңы. Тоқтың жұмысы мен қуаты
- •46. Металдардағы электр тоғы.
- •47. . Электролиттердегі электр тогы. Фарадейдің электролиз заңы.
- •48. Газдардағы жəне плазмадағы электр тоғы. Плазма туралы түсінік.
- •50. Тізбектің тармақталуы Кирхгоф заңы.
- •52.Электромагниттік индукция. Өздік индукция құбылысы. Индуктивтік. Өзара индукция.
- •54. Заттардағы магнит өрісі. Магнетиктер түрі. Кюри температурасы.
- •56.Дыбыстық толқындар.Радиобайланыс принципі.Радиолокация.
- •63.Абсолют қара дененің сəуле шығару заңдары.
- •64.Фотоэлектрлік эффект. Комптон эффектісі
- •65. Атомдық спектрлердегі заңдылықтар. Атом құрылысы..Бор қағидалары
- •66. Резерфорд тәжірибесі
- •67. Ядролық Күштер
- •69. Табиғи және жасанды радиоактивтік. Радиоактивтік ыдырау заңы
- •70. Ядролық реакциялар
66. Резерфорд тәжірибесі
Резерфорд
тəжірбиесі.
Томсон мроделіндегі қайшылықтарды
атом қайнауынан əйтеуір бір амалмен
тікелей барлап қарау арқылы шешүге
болатын еді. Міне осындай тəжірибені
ағылшын физині Э, Резерфорд (1871-1937) жəне
оның шəкірті Г, Гейгер, Э, Марсден
жүргізді. (1911 ж.) Тəжірибелер Томсон
моделініңи келісімсіздігін көрсетті.
Осы тəжірибе нəтижелеріне сүйеніп
Э.Резерфорд атомның жаңа ядролық α
-
бөлшектер көмегімен жүргізілген мынадай
тəжірибелерге негізделген болатын .
α
-
бөлшектер шапшаң қозғалатын едəуір
ауыр бөлшектер, содықтан α
-бөлшектер
басқа заттың атомдарымен соғылысқанда
атомның ішіне енуі мүмкін. α
-
бөлшектер дің жіңішке шоғы жұқа метал
фольгаға бағытталады. Фольгадан кейін
экран орналастырылған: ол зарядталған
жылдам бөлшектер соғылғанда жарқ етіп
жарық шығаратын қабілеті бар мырыш
сульфидімен қапталған. Томсон моделіне
сəйкес α
бөлшектер
үлкен бұрыштарға ауытқымауға тиіс деп
күтілді. өткені электрондар α
бөлшектерден
əлдеқайда жеңіл жəне α-бөлшектерді
қатты тебетіндей щоғырланған ауыр оң
зарядтар осы модельде жоқ. Резерфорд
алған эксперимент нəтижелері осы
болжамдарға қайшы келеді. α-бөлшектредің
басым көпшілігі фольгадан негізінен
бос кеңістіктен өткендей түзу сызықты
жолынан ауытқымай өтетіндігі байқалған.
Қалыңдығы 4
алтын
фольгадан өткенде α
бөлшектердің
көпшілігі түзу сызықты жолдан
−
–тан аспайтын θ
бұрыштарға
ауытқыған. Бастапқы қозғалыс бағытынан
ауытқыған α-бөлшектерге
келсек, өте үлкен бұрыштарға кейде 1800
-қа дейінгі бұрышқа аздаған ғана α
бөлшектер
шашырайды. 8000 α
бөлшектің
біреуі 1800 -қа бұрылып, кері серпілген.
Резерфорд бұл туралы: мұның өзі егер
15 дюймдік снарядпен жұқа темекі қағазын
атқан болсақ, ал сол снаряд кері қайтып,
сізге тигені сияқты ақылға қонбайтын
нəрсе – деген. Резерфордтың пікірі
бойынша бұл оң зарядталған α
бөлшектер кеңістіктің өте кішкентай
аймағында шоғырланған. Резерфорд былай
ұйғарды: атом өте кішкентай, бірақ
ауыр,оң зарядталған ядродан жəне оны
қайсібір қашықтықта қоршаған
электрондардан тұрады. Резерфорд
тəжірибелерінде оң зарядталған ядро
анықталғаннан кейін енді
электрондар атомның қай жерінде болады, ал қалған кеңістік немен толтырылған деген сұраққа жауап беру керек болды. Резерфорд атомның құрылысы планеталар жүйесіне ұқсас деген жорамал ұсынды. Күннің айналасында үлкен қашықтарда планеталар қалай айналып жүретін болса, дəл солай атомның ішінде электрондар ядроны айналып жүреді. Ядродан ең алыс электрон орбитасының
радиусы атомның радиусы болады. Атом құрылысының осындай моделі планетарлық немесе ядролық модель деп аталады.
Бірақ атомдық жүйелер планеталар жүйесінен планеталар мен
электрондардың бұлардың орбиталарында ұстап тұратын күштердің физикалық табиғаты бойынша өзгеше болады: планеталар күнде бүкіл əлемдік тартылыс күштерімен тартылып тұрады.
1911 жылы ағылшын физигі Резерфорд атомның ядролық моделін ұсынды. Резерфорд өзінің шәкірттері Г.Гейгер және Э. Марсденмен бірге альфа-бөлшектер шоғын өте жұқа алтын фольгадан өткізіп, бірнеше тәжірибелер жасады. Осы тәжірибелерді зерделеу нәтижесінде атомның ядролық, басқаша айтсақ, планетарлық моделі өмірге келді.
Тәжірибе барысында өте жұқа (l=6*10-7 м) алтын фольганы энергиясы 7,68 МэВ жылдам альфа бөлшектермен атқылаған. Қорғасын контейнердің түбінде орналасқан 21484 Ро радиоактивті элементтен шыққан альфа-бөлшектердің жіңішке шоғы алтын фольгадан өткенде шашырайды, яғни алғашқы бағытынан ауытқиды. Ол кезде альфа-бөлшектердің оң заряды (2е) гелий иондары екені белгілі болатын. Фольгадан шашыраған альфа-бөлшектердің қаншасы қандай бұрышқа ауытқығанын есептей отырып, осы ауытқуларды тудырған нысана-атомдардың құрылымы анықталады. Фольганың қалыңдығы өте аз болғандықтан, одан өткенде әрбір альфа-бөлшек тек бір атоммен ғана әсерлеседі, яғни бір-ақ рет шашырауға ұшырайды деп есептеуге болады. Шашыраған альфа-бөлшектер күкіртті цинкпен (ZnS) қапталған экранға келіп соғылады. Күкіртті цинк молекулаларының альфа-бөлшекпен соқтығысқанда сәуле шығаратын қасиеті бар. Сондықтан экранның альфа-бөлшек соғылған жерлерінде сцинтилляция, яғни өте әлсіз жарқыл байқалады. Тәжірибенің мақсаты берілген уақыт аралығында байқалатын жарқылдардың φ ауытқу бұрышына тәуелділігін анықтау.
Тәжірибенің нәтижесінде альфа-бөлшектердің басым көпшілігі фольгадан өткенде алғашқы бағыттан ауытқымайтыны (φ≈1 – 2°) анықталды. Бұл нәтиже, негізінен, Томсон моделіне сүйеніп жасалған есептеулермен дәл келді. Бірақ, альфа-бөлшектердің мардымсыз аз бөлігі 90°-тан артық бұрышқа ауытқитыны, яғни олар фольгаға соғылып, кері бағытта ұшатыны таңдандырды. Сегіз мыңға жуық бөлшектердің біреуі ғана осындай үлкен бұрышқа ауытқиды екен! Мұны Томсон моделі негізінде түсіндіру тіпті мүмкін болмады.
Тәжірибеде алынған нәтижелерді зерделей отырып Резерфорд өз моделін ұсынды. Ол атомның оң заряды оның ортасында орналасқан радиусы шамамен 10-15 м өте аз көлемге жинақталған деген қорытындыға келді. Бірақ орталық бөлшекті Резерфорд ядро деп атады. Атомның массасын түгел дерлік ядрода шоғырланған. Ядроны айнала әр түрлі орбиталармен электрондар қозғалып жүреді. Бұл үлгі Күн жүйесінің құрылымына ұқсайтын болғандықтан, оны атомның планетарлық моделі деп те атайды. Модель бойынша атом көлемінің басым көпшілік бөлігі «бос» болып шығады, ядроның радиусы атомның радиусынан 100000 есе кіші. Орбиталардағы электрондардың теріс зарядтарының қосындысы ядроның оң зарядына тең, атом электрлік бейтарап.
Атомның ішіндегі бос кеңістік «өте үлкен». Сондықтан, фольга арқылы өткенде альфа-бөлшектерінің көбі ядродан алыс өтеді де, шашырамайды. Электрондар альфа-бөлшектен 8 мың еседей жеңіл болғандықтан, оның қозғалыс траекториясын өзгерте алмайды. Тек ядроға тікелей қарсы келіп қалған альфа-бөлшектер ғана онымен әсерлесін, кері ұшады. мұндай бөлшектер саны ядро радиусының атом радиусына қатынасымен анықталады.
Жоғарыда біз тәжірибеге тек сапалық талдау жүргіздік. резерфорд сонымен қатар өз моделінің және Томсон моделінің негізінде есептеу жұмыстарын жүргізді, олардың нәтижесінде Резерфорд үлгісінің дұрыстығын көрсетті. Бірақ классикалық физика тұрғысынан мұндай атомның орнықты болуы мүмкін емес. Бұдан бұрын айтылғандай, зарядталған бөлшек үдемелі қозғалса, міндетті түрде сәулеленуі (электромагниттік толқындар шығаруы) керек. Бұл сәулеленудің жиілігі электронның ядро маңында айналу жиілігіне тең болуы тиіс. Электрон ядроны айнала дөңгелек орбитамен қозғалса, оның центрге тартқыш үдеуі бар. Олай болса, электрон сәуле шығара отырып, өз энергиясын азайтуы тиіс. Энергияның (орбиталық жылдамдықтың) азаюы электронның ядроға кулон күшінің әсерінен біртіндеп жақындап, ақыры оған құлап түсуіне әкеп соғады. бұған бар болғаны 10-8 с-қа тең уақыт кетеді екен және классикалық теория бойынша мұндай атомның сәулелену спектрі тұтас болу керек