
- •Ано впо «Омский экономический институт»
- •Кафедра технологии продуктов питания
- •Учебно-методический комплекс
- •По дисциплине
- •«Процессы и аппараты пищевых производств»
- •Омск 2008
- •II. Рабочая программа по дисциплине «Процессы и аппараты пищевых производств»
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины и виды учебной работы
- •Содержание дисциплины
- •Разделы дисциплины и вид занятий
- •4.2. Содержание разделов дисциплины
- •4.3.Темы и планы семинарских занятий
- •Лабораторный практикум
- •Самостоятельная работа
- •7. Выполнение курсовой работы Учебным планом не запланировано.
- •9. Учебно-методическое обеспечение дисциплины
- •9.1. Рекомендуемая литература Основная литература
- •Дополнительная литература
- •Курс лекций по дисциплине «Процессы и аппараты пищевых производств»
- •Лекция 1. Общие положения
- •Нами будут рассматриваться процессы, создаваемые в определенных технологических целях.
- •1.1. Классификация основных процессов и аппаратов пищевых производств
- •1.2. Кинетические закономерности основных процессов пищевых производств
- •1.3. Общие принципы расчёта машин и аппаратов
- •Для изолированных систем нет приходов и уходов субстанции:
- •1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов пищевых производств
- •Лекция 2. Гидромеханические процессы
- •2.1. Физические свойства жидкостей и газов
- •Это уравнение можно записать для расчета плотности газа
- •2.2. Гидравлика
- •2.2.1. Гидростатика
- •2.2.2. Практическое приложение уравнения гидростатики
- •Если сосуды заполнены одной жидкостью плотностью , но давления над уровнем жидкости в них неодинаковы и равны и , то
- •2.3. Гидродинамика
- •2.3.1. Основные характеристики движения жидкостей
- •Средняя скорость по сечению трубопровода связана с максимальной скоростью следующим соотношением:
- •2.3.2. Турбулентный режим
- •2.3.3. Дифференциальные уравнения движения Эйлера
- •2.3.4. Дифференциальные уравнения движения Навье–Стокса
- •2.3.5. Уравнение Бернулли
- •2.3.6. Гидродинамическое подобие
- •2.3.7. Гидравлические сопротивления в трубопроводах и каналах
- •2.3.8. Движение тел в жидкостях
- •2.3.9. Движение жидкостей через неподвижные пористые слои
- •2.3.10. Гидродинамика псевдоожиженных слоев
- •2.3.11. Гидродинамика двухфазных потоков
- •2.4. Перемещение жидкостей (насосы)
- •2.4.1. Классификация и области применения насосов
- •2.4.2. Параметры насосов
- •2.4.3. Насосная установка
- •2.4.4. Основное уравнение лопастных машин (уравнение Эйлера)
- •2.4.5. Характеристики центробежных насосов
- •2.5. Сжатие и перемещение газов (компрессоры)
- •2.5.1. Классификация компрессоров
- •2.5.2. Поршневые компрессоры
- •2.5.3. Теоретический рабочий процесс в поршневом компрессоре
- •2.5.4. Производительность действительного поршневого компрессора. Коэффициенты производительности
- •2.5.5. Принцип действия, классификация и устройство турбокомпрессоров
- •2.6. Процессы разделения неоднородных смесей
- •2.6.1. Классификация неоднородных систем и способов
- •2.6.2. Материальные балансы процессов разделения
- •2.6.3. Осаждение
- •2.7. Фильтрование
- •2.8. Перемешивание в жидкой фазе
- •Лекция 3. Тепловые процессы
- •3.1. Способы передачи теплоты
- •3.2. Тепловые балансы
- •3.3. Температурное поле и температурный градиент
- •3.4. Передача тепла теплопроводностью
- •3.5. Тепловое излучение
- •3.6. Конвективный теплообмен
- •3.6.1. Теплоотдача
- •3.6.2. Дифференциальное уравнение конвективного теплообмена
- •3.6.3. Подобие процессов теплообмена
- •3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- •3.6.5. Теплоотдача при изменении агрегатного состояния
- •3.7. Сложный теплообмен
- •3.8. Процессы нагревания, охлаждения и конденсации
- •3.9. Теплообменные аппараты
- •3.9.1. Классификация и типы теплообменных аппаратов
- •3.9.2. Расчет теплообменных аппаратов
- •3.9.3. Рекомендации по выбору и проектированию поверхностных теплообменников
- •3.10. Выпаривание
- •Лекция 4. Основы массопередачи
- •4.1. Общие сведения о массообменных процессах
- •4.1.1. Основное уравнение массопередачи
- •4.1.2. Материальный баланс массообменных процессов
- •4.1.3. Движущая сила массообменных процессов
- •4.1.4. Модифицированные уравнения массопередачи
- •4.1.5. Основные законы массопередачи
- •4.1.6. Подобие процессов переноса массы
- •4.1.7. Связь коэффициентов массопередачи и массоотдачи
- •4.1.8. Массопередача с твердой фазой
- •4.2. Абсорбция
- •4.2.1. Равновесие при абсорбции
- •4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •4.2.3. Cхемы абсорбционных процессов
- •4.2.4. Конструкции колонных абсорбционных аппаратов
- •4.3. Адсорбция
- •4.3.1. Равновесие в процессах адсорбции
- •4.3.2. Конструкции адсорбционных аппаратов
- •4.4. Процессы мембранного разделения смесей
- •4.4.1. Сущность процесса мембранного разделения смесей
- •4.4.2. Мембраны
- •4.4.3. Кинетика процессов мембранного разделения смесей
- •4.4.4. Влияние различных факторов на мембранное разделение
- •4.4.5. Мембранные аппараты
- •4.5. Механические процессы
- •4.5.1. Измельчение твердых материалов
- •4.5.2. Физико-механические основы измельчения
- •4.9.3. Размольно-дробильные машины
- •Тарелка; 2- корпус; 3- дробящая головка; 4- пружина; 5- станина; 6- шаровой
- •Подпятник.
- •4.5.4. Классификация и сортировка материалов
- •Корпус; 2- внутренний конус; 3- распределительный диск; 4- вентилятор;
- •Корпус; 2- внутренний конус; 3- патрубок для ввода исходного сырья; 4,5 – патрубки для отвода крупных частиц; 6- патрубок для вывода воздуха с мелкими частицами; 7- поворотные лопатки
- •IV. Методические указания по выполнению лабораторных работ. Лабораторная работа № 1 Гравитационное осаждение шарообразных частиц.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Лабораторная работа № 2 Гидравлическое сопротивление прямых гладких труб.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Значение фактора формы для прямоугольного сечения
- •Значение фактора формы для треугольного сечения
- •Значение фактора формы для эллиптического сечения
- •Значение фактора формы для кольцевого сечения
- •Лабораторная работа № 3 Передача тепла теплопроводностью через многослойную стенку
- •1. Цель и содержание работы
- •2. Теоретические положения
- •2.1. Плоская стенка
- •2.2. Цилиндрическая стенка
- •3. Описание оборудования
- •4. Порядок выполнения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •Лабораторная работа №4 Определение термического сопротивления изоляции
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Данные по материалам изоляции
- •Лабораторная работа № 5 Теплообменник «труба в трубе».
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •V. Тестовые вопросы по дисциплине «Процессы и аппараты пищевых производств»
- •Методические указания по выполнению контрольной работы по дисциплине «Процессы и аппараты пищевых производств»
- •Исходные расчетные данные по вариантам (задача 1).
- •VII. Экзаменационные вопросы.
1.1. Классификация основных процессов и аппаратов пищевых производств
В зависимости от закономерностей, характеризующих протекание, процессы пищевой технологии можно разделить на следующие группы.
Механические процессы, скорость которых связана с законами физики твёрдого тела. К ним относятся: измельчение, классификация, дозирование и смешение твёрдых сыпучих материалов.
Гидромеханические процессы, скорость протекания которых определяется законами гидромеханики. К ним относятся: сжатие и перемещение газов, перемещения жидкостей, твердых материалов, осаждение, фильтрование, перемешивание в жидкой фазе, псевдоожижение и т. п.
Тепловые процессы, скорость протекания которых определяется законами теплопередачи. К ним следует отнести процессы: нагревания, выпаривания, охлаждения (естественного и искусственного), конденсации и кипения.
Массообменные (диффузионные) процессы, интенсивность которых определяется скоростью перехода вещества из одной фазы в другую, т.е. законами массопередачи. К диффузионным процессам относятся: абсорбция, ректификация, экстракция, кристаллизация, адсорбция, сушка и др.
В соответствии с перечисленным делением процессов пищевые аппараты классифицируют следующим образом: измельчающие и классифицирующие машины; гидромеханические, тепловые, массообменные аппараты.
По организационно-технической структуре процессы делятся на периодические и непрерывные.
В периодическом процессе отдельные стадии (операции) осуществляются в одном месте (аппарате, машине), но в разное время (рис.1.1). В непрерывном процессе (рис.1.2) отдельные стадии осуществляются одновременно, но в разных местах (аппаратах или машинах).
Непрерывные процессы имеют значительные преимущества перед периодическими, состоящими в возможности специализации аппаратуры для каждой стадии, улучшения качества продукта, стабилизации процесса во времени, простоте регулирования, возможности автоматизации и т.п.
При проведении процессов в любом из перечисленных аппаратов изменяются значения параметров перерабатываемых материалов. Параметрами, характеризующими процесс, являются давление, температура, концентрация, плотность, скорость потока, энтальпия и др.
В зависимости от характера движения потоков и изменения параметров веществ, поступающих в аппарат, все аппараты могут быть разделены на три группы: аппараты идеального (полного) смешения, аппараты идеального (полного) вытеснения и аппараты промежуточного типа. Параметрами, определяющими состояние вещества в аппарате, называются величины, характерные для данного процесса, например: температура, давление, концентрация и т.п.
Наиболее
удобно продемонстрировать особенности
потока различной структуры на примере
теплообменников непрерывного действия
различной конструкции. На рис.1.3,а
представлена схема теплообменника,
работающего по принципу идеального
вытеснения. Принимается, что в этом
аппарате происходит «поршневое» течение
потока без перемешивания. Температура
одного из теплоносителй меняется по
длине аппарата
от начальной температуры
до конечной
в результате того, что протекающие через
аппарат последующие объёмы жидкости
не смешиваются с предыдущими, полностью
вытесняя их. Температура
второго теплоносителя принята постоянной
(конденсирующийся пар).
В
аппарате идеального
смешения
последующие и предыдущие объёмы жидкости
идеально перемешаны, температура
жидкости в аппарате постоянна и равна
конечной
(рис. 1.3,б).
В реальных аппаратах не могут быть обеспечены ни условия идеального смешения, ни идеального вытеснения. На практике можно достигнуть только достаточно близкого приближения к этим схемам, поэтому реальные аппараты – это аппараты промежуточного типа (рис. 1.3,в).
Движущая
сила рассматриваемого процесса нагревания
жидкости для любого элемента аппарата
представляет разность
между температурами греющего пара и
нагреваемой жидкости.
Рис. 1.1. Аппарат для проведения периодического процесса:
1 – сырье; 2 – готовый продукт; 3 – пар; 4 – конденсат; 5 – охлаждающая вода
Рис. 1.2. Аппарат для проведения непрерывного процесса:
1– теплообменник-нагреватель; 2 – аппарат с мешалкой; 3 – теплообменник-холодильник; I – сырье; II – готовый продукт; III – пар; IV – конденсат; V – охлаждающая вода
а) б) в)
Рис. 1.3. Изменение температуры при нагревании жидкости в аппаратах различных типов: а – полного вытеснения; б – полного смешения; в – промежуточного типа
Разница
в протекании процессов в каждом из типов
аппаратов становится особенно ясной,
если рассмотреть, как изменяется движущая
сила процесса
в каждом из типов аппаратов. Из сравнения
графиков следует, что максимальная
движущая сила имеет место в аппаратах
полного вытеснения, минимальная – в
аппаратах полного смешения.
Следует отметить, что движущая сила процессов в непрерывно действующих аппаратах идеального смешения может быть значительно увеличена путём разделения рабочего объёма аппарата на ряд секций.
Если объём аппарата идеального смешения разделить на n аппаратов и в них провести процесс, то движущая сила увеличится (рис. 1.4).
При увеличении числа секций в аппаратах идеального смешения значение движущей силы приближается к её значению в аппаратах идеального вытеснения, и при большом числе секций (порядка 8–12) движущие силы в аппаратах того и другого типа становятся приблизительно одинаковыми.
Рис. 1.4. Изменение движущей силы процесса при секционировании