
- •Ано впо «Омский экономический институт»
- •Кафедра технологии продуктов питания
- •Учебно-методический комплекс
- •По дисциплине
- •«Процессы и аппараты пищевых производств»
- •Омск 2008
- •II. Рабочая программа по дисциплине «Процессы и аппараты пищевых производств»
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины и виды учебной работы
- •Содержание дисциплины
- •Разделы дисциплины и вид занятий
- •4.2. Содержание разделов дисциплины
- •4.3.Темы и планы семинарских занятий
- •Лабораторный практикум
- •Самостоятельная работа
- •7. Выполнение курсовой работы Учебным планом не запланировано.
- •9. Учебно-методическое обеспечение дисциплины
- •9.1. Рекомендуемая литература Основная литература
- •Дополнительная литература
- •Курс лекций по дисциплине «Процессы и аппараты пищевых производств»
- •Лекция 1. Общие положения
- •Нами будут рассматриваться процессы, создаваемые в определенных технологических целях.
- •1.1. Классификация основных процессов и аппаратов пищевых производств
- •1.2. Кинетические закономерности основных процессов пищевых производств
- •1.3. Общие принципы расчёта машин и аппаратов
- •Для изолированных систем нет приходов и уходов субстанции:
- •1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов пищевых производств
- •Лекция 2. Гидромеханические процессы
- •2.1. Физические свойства жидкостей и газов
- •Это уравнение можно записать для расчета плотности газа
- •2.2. Гидравлика
- •2.2.1. Гидростатика
- •2.2.2. Практическое приложение уравнения гидростатики
- •Если сосуды заполнены одной жидкостью плотностью , но давления над уровнем жидкости в них неодинаковы и равны и , то
- •2.3. Гидродинамика
- •2.3.1. Основные характеристики движения жидкостей
- •Средняя скорость по сечению трубопровода связана с максимальной скоростью следующим соотношением:
- •2.3.2. Турбулентный режим
- •2.3.3. Дифференциальные уравнения движения Эйлера
- •2.3.4. Дифференциальные уравнения движения Навье–Стокса
- •2.3.5. Уравнение Бернулли
- •2.3.6. Гидродинамическое подобие
- •2.3.7. Гидравлические сопротивления в трубопроводах и каналах
- •2.3.8. Движение тел в жидкостях
- •2.3.9. Движение жидкостей через неподвижные пористые слои
- •2.3.10. Гидродинамика псевдоожиженных слоев
- •2.3.11. Гидродинамика двухфазных потоков
- •2.4. Перемещение жидкостей (насосы)
- •2.4.1. Классификация и области применения насосов
- •2.4.2. Параметры насосов
- •2.4.3. Насосная установка
- •2.4.4. Основное уравнение лопастных машин (уравнение Эйлера)
- •2.4.5. Характеристики центробежных насосов
- •2.5. Сжатие и перемещение газов (компрессоры)
- •2.5.1. Классификация компрессоров
- •2.5.2. Поршневые компрессоры
- •2.5.3. Теоретический рабочий процесс в поршневом компрессоре
- •2.5.4. Производительность действительного поршневого компрессора. Коэффициенты производительности
- •2.5.5. Принцип действия, классификация и устройство турбокомпрессоров
- •2.6. Процессы разделения неоднородных смесей
- •2.6.1. Классификация неоднородных систем и способов
- •2.6.2. Материальные балансы процессов разделения
- •2.6.3. Осаждение
- •2.7. Фильтрование
- •2.8. Перемешивание в жидкой фазе
- •Лекция 3. Тепловые процессы
- •3.1. Способы передачи теплоты
- •3.2. Тепловые балансы
- •3.3. Температурное поле и температурный градиент
- •3.4. Передача тепла теплопроводностью
- •3.5. Тепловое излучение
- •3.6. Конвективный теплообмен
- •3.6.1. Теплоотдача
- •3.6.2. Дифференциальное уравнение конвективного теплообмена
- •3.6.3. Подобие процессов теплообмена
- •3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- •3.6.5. Теплоотдача при изменении агрегатного состояния
- •3.7. Сложный теплообмен
- •3.8. Процессы нагревания, охлаждения и конденсации
- •3.9. Теплообменные аппараты
- •3.9.1. Классификация и типы теплообменных аппаратов
- •3.9.2. Расчет теплообменных аппаратов
- •3.9.3. Рекомендации по выбору и проектированию поверхностных теплообменников
- •3.10. Выпаривание
- •Лекция 4. Основы массопередачи
- •4.1. Общие сведения о массообменных процессах
- •4.1.1. Основное уравнение массопередачи
- •4.1.2. Материальный баланс массообменных процессов
- •4.1.3. Движущая сила массообменных процессов
- •4.1.4. Модифицированные уравнения массопередачи
- •4.1.5. Основные законы массопередачи
- •4.1.6. Подобие процессов переноса массы
- •4.1.7. Связь коэффициентов массопередачи и массоотдачи
- •4.1.8. Массопередача с твердой фазой
- •4.2. Абсорбция
- •4.2.1. Равновесие при абсорбции
- •4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •4.2.3. Cхемы абсорбционных процессов
- •4.2.4. Конструкции колонных абсорбционных аппаратов
- •4.3. Адсорбция
- •4.3.1. Равновесие в процессах адсорбции
- •4.3.2. Конструкции адсорбционных аппаратов
- •4.4. Процессы мембранного разделения смесей
- •4.4.1. Сущность процесса мембранного разделения смесей
- •4.4.2. Мембраны
- •4.4.3. Кинетика процессов мембранного разделения смесей
- •4.4.4. Влияние различных факторов на мембранное разделение
- •4.4.5. Мембранные аппараты
- •4.5. Механические процессы
- •4.5.1. Измельчение твердых материалов
- •4.5.2. Физико-механические основы измельчения
- •4.9.3. Размольно-дробильные машины
- •Тарелка; 2- корпус; 3- дробящая головка; 4- пружина; 5- станина; 6- шаровой
- •Подпятник.
- •4.5.4. Классификация и сортировка материалов
- •Корпус; 2- внутренний конус; 3- распределительный диск; 4- вентилятор;
- •Корпус; 2- внутренний конус; 3- патрубок для ввода исходного сырья; 4,5 – патрубки для отвода крупных частиц; 6- патрубок для вывода воздуха с мелкими частицами; 7- поворотные лопатки
- •IV. Методические указания по выполнению лабораторных работ. Лабораторная работа № 1 Гравитационное осаждение шарообразных частиц.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Лабораторная работа № 2 Гидравлическое сопротивление прямых гладких труб.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Значение фактора формы для прямоугольного сечения
- •Значение фактора формы для треугольного сечения
- •Значение фактора формы для эллиптического сечения
- •Значение фактора формы для кольцевого сечения
- •Лабораторная работа № 3 Передача тепла теплопроводностью через многослойную стенку
- •1. Цель и содержание работы
- •2. Теоретические положения
- •2.1. Плоская стенка
- •2.2. Цилиндрическая стенка
- •3. Описание оборудования
- •4. Порядок выполнения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •Лабораторная работа №4 Определение термического сопротивления изоляции
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Данные по материалам изоляции
- •Лабораторная работа № 5 Теплообменник «труба в трубе».
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •V. Тестовые вопросы по дисциплине «Процессы и аппараты пищевых производств»
- •Методические указания по выполнению контрольной работы по дисциплине «Процессы и аппараты пищевых производств»
- •Исходные расчетные данные по вариантам (задача 1).
- •VII. Экзаменационные вопросы.
4.9.3. Размольно-дробильные машины
Размольные машины подразделяются на дробилки и мельницы. Дробилки предназначены для крупного, среднего и мелкого измельчения. Соответственно, мельницы используются для измельчения твердых материалов с размерами зерен от 5 мм и ниже. Такое разделение в какой-то мере является условным, т.к. отдельные типы дробилок и мельниц используются для проведения смежных видов измельчения.
Особенности конструкций дробильно-размольного оборудования обусловлены видом энергии, используемой для измельчения. Соответственно с этим различают четыре основных типа машин: механические дробилки; механические мельницы (с мелющими телами); взрывные, пневматические, электрогидравлические, электроимпульсные, электротермические размольно-дробильные аппараты; аэродинамические и пневмомеханические мельницы (струйные аппараты без мелющих тел).
В настоящее время в пищевой промышленности находят применение исключительно механические дробилки и мельницы. Область применения тех или иных типов машин определяется прочностью разламываемого материала, производительностью и гранулометрическим составом измельченного материала. Рассмотрим основные типы размольно-дробильных машин.
Щековые дробилки предназначены для грубого дробления твердых пород с преобладанием измельчения способами разламывания, раскалывания и раздавливания. Чаще всего щековые дробилки используются при крупном и среднем дроблении.
В щековой дробилке материал (рис.4.53.) материал измельчается между неподвижной 1 и подвижной 2 щеками. Подвижная щека 2 приближается (рабочий ход) или отходит (холостой ход) от неподвижной щеки 1 при вращении эксцентрикового вала 3. Во время рабочего хода происходит дробление, а во время холостого - выгрузка под действием собственного веса дробленного материала. Щеке 2 движение передается шатуном 6, подвижно закрепленным с эксцентриковым валом 5, и двумя шарнирно закрепленными распорными плитами - передней 7 и задней. Тяга 8 и пружина 9 создают в движущейся системе натяжение и способствуют холостому ходу подвижной щеки. Путем взаимного перемещения клина 10 регулируется ширина выпускного отверстия и, следовательно, степень измельчения.
Рис.4.53. Схема щековой дробилки с верхним подвесом щеки: 1 неподвижная щека;
2, 3 - подвижная щека; 4 – шарнир; 5 - эксцентриковый вал; 6 – шатун; 7 – передняя распорная плита; 8 – тяга; 9 – пружина; 10 – регулировочный клин; 11 – маховик.
На рис. 4.54. приведена конструкция щековой дробилки простого действия (ЩДП). Пространство между щеками, с торцов закрытое гладкими плитами, называется пастью.
Рис. 4.54. Щековая дробилка ЩДП:
1, 2 – защитные щеки неподвижной и подвижной плит, соответственно; 3 – маховое колесо; 4 – шатун; 5 – распорные плиты; 6 – клинья; 7 – пружина
Поверхность плит может быть гадкой, рифленной или зубчатой (работа на изгиб и раскалывание твердого материала).
При работе дробилки возможно случайное попадание в рабочий объем очень прочного куска твердого постороннего материала. Чтобы избежать поломки дорогостоящих узлов и деталей щековой дробилки, для этих целей преднамеренно предусмотрена поломка какой-нибудь наиболее дешевой и легко сменяемой детали. Чаще всего эту роль выполняет ослабленная правая распорная плита 5. При ее поломке она легко может заменяться новой.
Диапазон размеров измельчаемого материала щековой дробилки достаточно широк: от лабораторных с размером в зеве 150 -100 мм до полупромышленных и промышленных с размером в зеве 2000 - 3000мм.
Достоинства щековых дробилок: простота, надежность, легкость обслуживания, компактность.
Недостатки: периодичность цикла работы и, как следствие, неравномерность нагрузки на рабочий орган в процессе измельчения, шум, поломки и необходимость замены распорной плиты.
К числу основных расчетных параметров, характеризующих работу щековой дробилки, относятся: угол захвата α между щеками; частота вращения вала; производительность; расход энергии.
От величины угла захвата (рис.4.55.) зависит степень измельчения, возрастающая с его увеличением. Если угол захвата велик, то куски материала могут выталкиваться из рабочего пространства дробилки.
Рис.4.55. К расчету угла захвата и производительности дробилки
На
кусок материала, раздавливаемого щеками,
действуют дробящее усилие
подвижной щеки, равная ей реакция
,
неподвижной щеки и силы трения
и
с коэффициентом трения скольжения
дробимого материала по металлу щек.
Кусок
материал не выталкивается вверх при
условии
.
Так как коэффициент трения скольжения
равен
тангенсу угла трения
(
),
то
,
откуда
.
Если принять
0,3, что соответствует углу трения порядка
16º, то угол захвата
составит 32º. Обычно угол захвата
принимают в пределах 15 - 25º.
Производительность щековой дробилки зависит от числа оборотов вала или числа качаний подвижной щеки.
Принимая,
что подвижная щека совершает не
качательное, а поступательное движение,
что за каждый оборот вала из дробилки
под действием своего веса выпадает
материал в объеме призмы (заштрихованной
на рисунке), можно определить наиболее
рациональное число оборотов вала. Высота
призмы
может
быть выражена через ход
щеки
и угол захвата
следующим образом:
.
При частоте вращения вала время разгрузки материала составит:
.
Путь свободного падения материала за время равен высоте трапеции:
или
.
Откуда определяется максимально допустимая частота вращения вала в минуту
.
На практике число оборотов рассчитывают по формуле:
.
Теоретическая производительность дробилки рассчитывается из условия, что объем раздробленного материала, выпавшего за один ход щеки равен объему призмы:
,
где
- длина загрузочного отверстия;
- площадь трапеции,
;
- минимальная ширина выпускной щеки
дробилки.
Производительность дробилки составит
,
где - коэффициент разрыхления материала на выходе из дробилки, принимается равным 0,3 – 0,65.
В связи с тем, что уравнение получено только исходя из геометрических представлений, оно не учитывает влияния на производительность физических свойств дробимого материала.
Потребляемая мощность щековой дробилки для вычисления мощности электродвигателя определяется по эмпирической формуле:
,
где
А,В
– длина и ширина загрузочного отверстия;
с
– коэффициент, для дробилок небольших
размеров с=160,
для дробилок с размерами загрузочного
отверстия 900
1200 мм и более с=80.
Конусные дробилки предназначены для дробления твердых материалов той же категории, что и щековые. Рабочим органом конусных дробилок является дробящая головка 4, вращающийся эксцентрично внутри неподвижного конуса 3 (рис. 4.56).
Рис.4.106. Схема конусной дробилки с подвешенным валом и крутым конусом: стакан-эксцентрик; 2- броневые плиты; 3- корпус; 4- дробящая головка; 5- вал; 6- опора.
Когда дробящая головка приближается к одной стороне корпуса, измельченный материал выпадает с противоположной стороны через расширяющуюся в это время часть кольцевой щели между корпусом и головкой.
Известны конусные дробилки двух основных типов: с подвешенным валом и головкой в виде крутого конуса – для крупного и среднего измельчения; с консольным валом и головкой в виде пологого конуса (грибовидные дробилки) – для среднего и мелкого измельчения.
В дробилке с подвешенным валом и крутым конусом (рис.4.56) находится дробящая головка 4 в виде крутого конуса, закрепленная на валу 5. Вал подвешен на шаровой опоре 6, жестко скрепленной с корпусом 3. Поднимая или опуская вал с помощью гайки, можно регулировать ширину выпускной щели дробилки. Нижний конец вала свободно входит в стакан-эксцентрик 1, приводимый во вращение посредством конической зубчатой передачи.
При холостом ходе вал с дробящей головкой не вращается вокруг оси, а совершает круговое вращение вокруг оси эксцентрика, описывая коническую поверхность с углом при вершине 8-12. При измельчении вследствии трения о материал вал и головка вращаются в направлении, противоположном вращению эксцентрика, с меньшей скоростью. При этом происходит непрерывное обкатывание дробящей головкой материала, который заполняет пространство между головкой 4 и броневыми плитами 2, покрывающими внутреннюю поверхность корпуса 3.
В дробилках с крутым конусом достигается степень измельчения 5-6. Промышленные дробилки для крупного дробления имеют размер загрузочной щели до 2200 мм.
Дробилки с консольным валом и головкой в виде пологого конуса (рис.4.57.) отличаются от конусной дробилки, описанной выше, формой головки и корпуса.
Рис.4.57. Схема грибовидной дробилки: