- •Ано впо «Омский экономический институт»
- •Кафедра технологии продуктов питания
- •Учебно-методический комплекс
- •По дисциплине
- •«Процессы и аппараты пищевых производств»
- •Омск 2008
- •II. Рабочая программа по дисциплине «Процессы и аппараты пищевых производств»
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины и виды учебной работы
- •Содержание дисциплины
- •Разделы дисциплины и вид занятий
- •4.2. Содержание разделов дисциплины
- •4.3.Темы и планы семинарских занятий
- •Лабораторный практикум
- •Самостоятельная работа
- •7. Выполнение курсовой работы Учебным планом не запланировано.
- •9. Учебно-методическое обеспечение дисциплины
- •9.1. Рекомендуемая литература Основная литература
- •Дополнительная литература
- •Курс лекций по дисциплине «Процессы и аппараты пищевых производств»
- •Лекция 1. Общие положения
- •Нами будут рассматриваться процессы, создаваемые в определенных технологических целях.
- •1.1. Классификация основных процессов и аппаратов пищевых производств
- •1.2. Кинетические закономерности основных процессов пищевых производств
- •1.3. Общие принципы расчёта машин и аппаратов
- •Для изолированных систем нет приходов и уходов субстанции:
- •1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов пищевых производств
- •Лекция 2. Гидромеханические процессы
- •2.1. Физические свойства жидкостей и газов
- •Это уравнение можно записать для расчета плотности газа
- •2.2. Гидравлика
- •2.2.1. Гидростатика
- •2.2.2. Практическое приложение уравнения гидростатики
- •Если сосуды заполнены одной жидкостью плотностью , но давления над уровнем жидкости в них неодинаковы и равны и , то
- •2.3. Гидродинамика
- •2.3.1. Основные характеристики движения жидкостей
- •Средняя скорость по сечению трубопровода связана с максимальной скоростью следующим соотношением:
- •2.3.2. Турбулентный режим
- •2.3.3. Дифференциальные уравнения движения Эйлера
- •2.3.4. Дифференциальные уравнения движения Навье–Стокса
- •2.3.5. Уравнение Бернулли
- •2.3.6. Гидродинамическое подобие
- •2.3.7. Гидравлические сопротивления в трубопроводах и каналах
- •2.3.8. Движение тел в жидкостях
- •2.3.9. Движение жидкостей через неподвижные пористые слои
- •2.3.10. Гидродинамика псевдоожиженных слоев
- •2.3.11. Гидродинамика двухфазных потоков
- •2.4. Перемещение жидкостей (насосы)
- •2.4.1. Классификация и области применения насосов
- •2.4.2. Параметры насосов
- •2.4.3. Насосная установка
- •2.4.4. Основное уравнение лопастных машин (уравнение Эйлера)
- •2.4.5. Характеристики центробежных насосов
- •2.5. Сжатие и перемещение газов (компрессоры)
- •2.5.1. Классификация компрессоров
- •2.5.2. Поршневые компрессоры
- •2.5.3. Теоретический рабочий процесс в поршневом компрессоре
- •2.5.4. Производительность действительного поршневого компрессора. Коэффициенты производительности
- •2.5.5. Принцип действия, классификация и устройство турбокомпрессоров
- •2.6. Процессы разделения неоднородных смесей
- •2.6.1. Классификация неоднородных систем и способов
- •2.6.2. Материальные балансы процессов разделения
- •2.6.3. Осаждение
- •2.7. Фильтрование
- •2.8. Перемешивание в жидкой фазе
- •Лекция 3. Тепловые процессы
- •3.1. Способы передачи теплоты
- •3.2. Тепловые балансы
- •3.3. Температурное поле и температурный градиент
- •3.4. Передача тепла теплопроводностью
- •3.5. Тепловое излучение
- •3.6. Конвективный теплообмен
- •3.6.1. Теплоотдача
- •3.6.2. Дифференциальное уравнение конвективного теплообмена
- •3.6.3. Подобие процессов теплообмена
- •3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- •3.6.5. Теплоотдача при изменении агрегатного состояния
- •3.7. Сложный теплообмен
- •3.8. Процессы нагревания, охлаждения и конденсации
- •3.9. Теплообменные аппараты
- •3.9.1. Классификация и типы теплообменных аппаратов
- •3.9.2. Расчет теплообменных аппаратов
- •3.9.3. Рекомендации по выбору и проектированию поверхностных теплообменников
- •3.10. Выпаривание
- •Лекция 4. Основы массопередачи
- •4.1. Общие сведения о массообменных процессах
- •4.1.1. Основное уравнение массопередачи
- •4.1.2. Материальный баланс массообменных процессов
- •4.1.3. Движущая сила массообменных процессов
- •4.1.4. Модифицированные уравнения массопередачи
- •4.1.5. Основные законы массопередачи
- •4.1.6. Подобие процессов переноса массы
- •4.1.7. Связь коэффициентов массопередачи и массоотдачи
- •4.1.8. Массопередача с твердой фазой
- •4.2. Абсорбция
- •4.2.1. Равновесие при абсорбции
- •4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •4.2.3. Cхемы абсорбционных процессов
- •4.2.4. Конструкции колонных абсорбционных аппаратов
- •4.3. Адсорбция
- •4.3.1. Равновесие в процессах адсорбции
- •4.3.2. Конструкции адсорбционных аппаратов
- •4.4. Процессы мембранного разделения смесей
- •4.4.1. Сущность процесса мембранного разделения смесей
- •4.4.2. Мембраны
- •4.4.3. Кинетика процессов мембранного разделения смесей
- •4.4.4. Влияние различных факторов на мембранное разделение
- •4.4.5. Мембранные аппараты
- •4.5. Механические процессы
- •4.5.1. Измельчение твердых материалов
- •4.5.2. Физико-механические основы измельчения
- •4.9.3. Размольно-дробильные машины
- •Тарелка; 2- корпус; 3- дробящая головка; 4- пружина; 5- станина; 6- шаровой
- •Подпятник.
- •4.5.4. Классификация и сортировка материалов
- •Корпус; 2- внутренний конус; 3- распределительный диск; 4- вентилятор;
- •Корпус; 2- внутренний конус; 3- патрубок для ввода исходного сырья; 4,5 – патрубки для отвода крупных частиц; 6- патрубок для вывода воздуха с мелкими частицами; 7- поворотные лопатки
- •IV. Методические указания по выполнению лабораторных работ. Лабораторная работа № 1 Гравитационное осаждение шарообразных частиц.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Лабораторная работа № 2 Гидравлическое сопротивление прямых гладких труб.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Значение фактора формы для прямоугольного сечения
- •Значение фактора формы для треугольного сечения
- •Значение фактора формы для эллиптического сечения
- •Значение фактора формы для кольцевого сечения
- •Лабораторная работа № 3 Передача тепла теплопроводностью через многослойную стенку
- •1. Цель и содержание работы
- •2. Теоретические положения
- •2.1. Плоская стенка
- •2.2. Цилиндрическая стенка
- •3. Описание оборудования
- •4. Порядок выполнения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •Лабораторная работа №4 Определение термического сопротивления изоляции
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Данные по материалам изоляции
- •Лабораторная работа № 5 Теплообменник «труба в трубе».
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •V. Тестовые вопросы по дисциплине «Процессы и аппараты пищевых производств»
- •Методические указания по выполнению контрольной работы по дисциплине «Процессы и аппараты пищевых производств»
- •Исходные расчетные данные по вариантам (задача 1).
- •VII. Экзаменационные вопросы.
Лекция 1. Общие положения
Совокупность тел, взаимодействующих между собой, представляет систему. Изменение состояния какой-либо системы, ее беспрерывное движение и развитие, происходящие в природе, производстве, лаборатории, обществе представляют собой процесс.
Нами будут рассматриваться процессы, создаваемые в определенных технологических целях.
Технология – наука о практическом применении законов физики, химии, биологии и других базисных наук для проведения технологических процессов. Эта наука возникла как самостоятельная отрасль знания в конце XVIII века в связи с ростом крупного машинного производства.
В пищевой промышленности осуществляются разнообразные процессы, в которых исходные материалы в результате взаимодействия претерпевают глубокие превращения, сопровождающиеся изменением агрегатного состояния, внутренней структуры и состава веществ. Совместно с химическими реакциями имеют место многочисленные механические, физические и физико-химические процессы. К ним относятся: перемешивание газов, жидкостей, твердых материалов; измельчение и классификация; нагревание, охлаждение и перемешивание веществ; разделение жидких и газовых неоднородных смесей; перегонка однородных многокомпонентных смесей; выпаривание растворов; сушка материалов и др. При этом тот или иной способ проведения того или иного процесса часто определяет возможность осуществления, эффективность и рентабельность всего технологического процесса в целом.
Для осуществления процессов необходимы машины и аппараты, иными словами процесс должен иметь определенное аппаратурное оформление.
Устройство, созданное человеком и выполняющее механическое движение для преобразования энергии, материалов и информации с целью полной замены или облегчения физического и умственного труда человека, увеличения его производительности, называется машиной.
Машины, предназначенные для преобразования обрабатываемого предмета (продукта), состоящего в изменении его размеров, формы, свойств или состояния, называются технологическими. К ним относятся также и аппараты.
Машины и аппараты, различающиеся по своему технологическому назначению и конструктивному оформлению, состоят в основном из типовых деталей и узлов.
Характерной особенностью машин является наличие неподвижных и движущихся элементов, включающих в себя рабочие органы, валы, подшипники, корпуса (станины), привод и т.п.
Аппараты состоят, как правило, из неподвижных элементов: обечаек, крышек, опор, фланцев и др.
Под словом «аппарат» понимается любое устройство, в котором протекает технологический процесс. Чаще всего аппарат является сосудом, снабженным различными механическими приспособлениями. Однако некоторые из рассматриваемых в дисциплине устройств, представляют собой типичные рабочие машины, например: центробежный экстрактор, дозатор, дробилку.
К числу основных аппаратов относятся тарельчатые и насадочные колонны, применяемые не только для проведения процессов ректификации, но и абсорбционных и экстракционных процессов и т.п.
Насосы, компрессоры, фильтры, центрифуги, теплообменники и сушилки также относятся к числу основных аппаратов и машин, которые в различных сочетаниях составляют типовое оборудование большинства пищевых производств.
Таким образом, в дисциплине «Процессы и аппараты пищевых производств» изучается теория основных процессов, принципы устройства и методы расчета аппаратов и машин, используемых для проведения технологических процессов.
Анализ закономерностей протекания основных процессов и разработка обобщенных методов расчета аппаратов производится исходя из фундаментальных законов природы, физики, химии, термодинамики и других наук. Курс построен на основе выявления аналогии внешне разнородных процессов и аппаратов независимо от отрасли пищевой промышленности, в которой они используются.
Идея об общности ряда основных процессов и аппаратов, применяемых в различных производствах, была высказана в России профессором Ф.А. Денисовым. В 1828 году он опубликовал «Пространное руководство к общей технологии или познанию всех работ, средств, орудий и машин, употребляемых в различных производствах». В этом труде основные процессы раскрываются с общих научных позиций, а не с точки зрения применения к тому или иному производству. Преимуществом такого обобщенного подхода к изучению процессов является то, что на основе использования законов базисных дисциплин (математики, физики, механики, гидродинамики, термодинамики, теплопередачи и др.) изучаются общие закономерности протекания процессов независимо от того, в каком производстве этот процесс используется.
Необходимость обобщенного изучения процессов и аппаратов была поддержана Д.И. Менделеевым, который в 1897 году опубликовал книгу «Основы фабрично-заводской промышленности». В ней он изложил принципы построения курса «Процессы и аппараты» и дал классификацию процессов, которая используется до сих пор.
Основываясь на идеях Д.И. Менделеева, профессор А. К. Крупский ввел новую учебную дисциплину по расчету и проектированию основных процессов и аппаратов в Петербургском технологическом институте.
Значительное развитие наука о процессах и аппаратах получила в трудах наших российских ученых: В.Н. Стабников, В.М. Лысянский, В.Д. Попов, Д. П. Коновалова, К. Ф. Павлова, А. М. Трегубова, А. Г. Касаткина, Н.И. Гельперина, В.В. Кафарова, А.Н. Плановского, П.Г. Романкова, В.Н. Стабникова и др.
За время становления курса «Процессы и аппараты пищевых производств» в него вошли четыре основные группы процессов: механические, гидромеханические, тепловые и массообменные. И при этом рассматриваются не только процессы, но и аппараты, в которых протекают эти процессы.
