
- •Ано впо «Омский экономический институт»
- •Кафедра технологии продуктов питания
- •Учебно-методический комплекс
- •По дисциплине
- •«Процессы и аппараты пищевых производств»
- •Омск 2008
- •II. Рабочая программа по дисциплине «Процессы и аппараты пищевых производств»
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины и виды учебной работы
- •Содержание дисциплины
- •Разделы дисциплины и вид занятий
- •4.2. Содержание разделов дисциплины
- •4.3.Темы и планы семинарских занятий
- •Лабораторный практикум
- •Самостоятельная работа
- •7. Выполнение курсовой работы Учебным планом не запланировано.
- •9. Учебно-методическое обеспечение дисциплины
- •9.1. Рекомендуемая литература Основная литература
- •Дополнительная литература
- •Курс лекций по дисциплине «Процессы и аппараты пищевых производств»
- •Лекция 1. Общие положения
- •Нами будут рассматриваться процессы, создаваемые в определенных технологических целях.
- •1.1. Классификация основных процессов и аппаратов пищевых производств
- •1.2. Кинетические закономерности основных процессов пищевых производств
- •1.3. Общие принципы расчёта машин и аппаратов
- •Для изолированных систем нет приходов и уходов субстанции:
- •1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов пищевых производств
- •Лекция 2. Гидромеханические процессы
- •2.1. Физические свойства жидкостей и газов
- •Это уравнение можно записать для расчета плотности газа
- •2.2. Гидравлика
- •2.2.1. Гидростатика
- •2.2.2. Практическое приложение уравнения гидростатики
- •Если сосуды заполнены одной жидкостью плотностью , но давления над уровнем жидкости в них неодинаковы и равны и , то
- •2.3. Гидродинамика
- •2.3.1. Основные характеристики движения жидкостей
- •Средняя скорость по сечению трубопровода связана с максимальной скоростью следующим соотношением:
- •2.3.2. Турбулентный режим
- •2.3.3. Дифференциальные уравнения движения Эйлера
- •2.3.4. Дифференциальные уравнения движения Навье–Стокса
- •2.3.5. Уравнение Бернулли
- •2.3.6. Гидродинамическое подобие
- •2.3.7. Гидравлические сопротивления в трубопроводах и каналах
- •2.3.8. Движение тел в жидкостях
- •2.3.9. Движение жидкостей через неподвижные пористые слои
- •2.3.10. Гидродинамика псевдоожиженных слоев
- •2.3.11. Гидродинамика двухфазных потоков
- •2.4. Перемещение жидкостей (насосы)
- •2.4.1. Классификация и области применения насосов
- •2.4.2. Параметры насосов
- •2.4.3. Насосная установка
- •2.4.4. Основное уравнение лопастных машин (уравнение Эйлера)
- •2.4.5. Характеристики центробежных насосов
- •2.5. Сжатие и перемещение газов (компрессоры)
- •2.5.1. Классификация компрессоров
- •2.5.2. Поршневые компрессоры
- •2.5.3. Теоретический рабочий процесс в поршневом компрессоре
- •2.5.4. Производительность действительного поршневого компрессора. Коэффициенты производительности
- •2.5.5. Принцип действия, классификация и устройство турбокомпрессоров
- •2.6. Процессы разделения неоднородных смесей
- •2.6.1. Классификация неоднородных систем и способов
- •2.6.2. Материальные балансы процессов разделения
- •2.6.3. Осаждение
- •2.7. Фильтрование
- •2.8. Перемешивание в жидкой фазе
- •Лекция 3. Тепловые процессы
- •3.1. Способы передачи теплоты
- •3.2. Тепловые балансы
- •3.3. Температурное поле и температурный градиент
- •3.4. Передача тепла теплопроводностью
- •3.5. Тепловое излучение
- •3.6. Конвективный теплообмен
- •3.6.1. Теплоотдача
- •3.6.2. Дифференциальное уравнение конвективного теплообмена
- •3.6.3. Подобие процессов теплообмена
- •3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- •3.6.5. Теплоотдача при изменении агрегатного состояния
- •3.7. Сложный теплообмен
- •3.8. Процессы нагревания, охлаждения и конденсации
- •3.9. Теплообменные аппараты
- •3.9.1. Классификация и типы теплообменных аппаратов
- •3.9.2. Расчет теплообменных аппаратов
- •3.9.3. Рекомендации по выбору и проектированию поверхностных теплообменников
- •3.10. Выпаривание
- •Лекция 4. Основы массопередачи
- •4.1. Общие сведения о массообменных процессах
- •4.1.1. Основное уравнение массопередачи
- •4.1.2. Материальный баланс массообменных процессов
- •4.1.3. Движущая сила массообменных процессов
- •4.1.4. Модифицированные уравнения массопередачи
- •4.1.5. Основные законы массопередачи
- •4.1.6. Подобие процессов переноса массы
- •4.1.7. Связь коэффициентов массопередачи и массоотдачи
- •4.1.8. Массопередача с твердой фазой
- •4.2. Абсорбция
- •4.2.1. Равновесие при абсорбции
- •4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •4.2.3. Cхемы абсорбционных процессов
- •4.2.4. Конструкции колонных абсорбционных аппаратов
- •4.3. Адсорбция
- •4.3.1. Равновесие в процессах адсорбции
- •4.3.2. Конструкции адсорбционных аппаратов
- •4.4. Процессы мембранного разделения смесей
- •4.4.1. Сущность процесса мембранного разделения смесей
- •4.4.2. Мембраны
- •4.4.3. Кинетика процессов мембранного разделения смесей
- •4.4.4. Влияние различных факторов на мембранное разделение
- •4.4.5. Мембранные аппараты
- •4.5. Механические процессы
- •4.5.1. Измельчение твердых материалов
- •4.5.2. Физико-механические основы измельчения
- •4.9.3. Размольно-дробильные машины
- •Тарелка; 2- корпус; 3- дробящая головка; 4- пружина; 5- станина; 6- шаровой
- •Подпятник.
- •4.5.4. Классификация и сортировка материалов
- •Корпус; 2- внутренний конус; 3- распределительный диск; 4- вентилятор;
- •Корпус; 2- внутренний конус; 3- патрубок для ввода исходного сырья; 4,5 – патрубки для отвода крупных частиц; 6- патрубок для вывода воздуха с мелкими частицами; 7- поворотные лопатки
- •IV. Методические указания по выполнению лабораторных работ. Лабораторная работа № 1 Гравитационное осаждение шарообразных частиц.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Лабораторная работа № 2 Гидравлическое сопротивление прямых гладких труб.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Значение фактора формы для прямоугольного сечения
- •Значение фактора формы для треугольного сечения
- •Значение фактора формы для эллиптического сечения
- •Значение фактора формы для кольцевого сечения
- •Лабораторная работа № 3 Передача тепла теплопроводностью через многослойную стенку
- •1. Цель и содержание работы
- •2. Теоретические положения
- •2.1. Плоская стенка
- •2.2. Цилиндрическая стенка
- •3. Описание оборудования
- •4. Порядок выполнения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •Лабораторная работа №4 Определение термического сопротивления изоляции
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Данные по материалам изоляции
- •Лабораторная работа № 5 Теплообменник «труба в трубе».
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •V. Тестовые вопросы по дисциплине «Процессы и аппараты пищевых производств»
- •Методические указания по выполнению контрольной работы по дисциплине «Процессы и аппараты пищевых производств»
- •Исходные расчетные данные по вариантам (задача 1).
- •VII. Экзаменационные вопросы.
4.1.6. Подобие процессов переноса массы
Системы уравнений конвективной диффузии и уравнений движения не имеют общего решения. Поэтому также, как и в случае гидромеханических и теплообменных процессов, можно методами теории подобия найти связь между переменными, характеризующими процесс переноса в потоке фазы, в виде обобщенного (критериального) уравнения массоотдачи.
В это уравнение входят критерии подобия, которыми описываются подобие процессов массоотдачи на границе фазы (подобие граничных условий) и в основной массе (ядре) фазы.
Подобие граничных условий можно установить, допуская наличие пограничного слоя, в котором перенос осуществляется только молекулярной диффузией. Количество вещества, переходящего из ядра к границе фазы, составляет
.
То же количество вещества переносится молекулярной диффузией через пограничный слой
.
Приравнивая выражения и проведя сокращения, получим зависимость, характеризующую подобие условий переноса на границе фазы:
.
Обозначив
,
запишем это уравнение в виде:
.
Из
этого уравнения делением левой на правую
часть, сократив подобные члены и опустив
знак минус, получим безразмерный
комплекс, который для подобных систем
является одинаковым (одним и тем же),
т.е.
.
Данный комплекс величин, при выражении их в единицах одной системы, является безразмерным и в соответствии с первой теоремой подобия представляет собой критерий подобия. Этот комплекс называют диффузионным критерием Нуссельта
.
Диффузионный критерий Нуссельта выражает отношение интенсивности переноса вещества в ядре фазы к интенсивности переноса в диффузионном пограничном подслое, где массообмен определяется молекулярной диффузией.
Из дифференциального уравнения конвективной диффузии
……,
получаем
безразмерные комплексы делением всех
членов уравнения на
:
/
;
.
Вычеркнув в полученных комплексах символы дифференцирования и направления, после сокращения получим диффузионный критерий Фурье:
или, чтобы исключить математические действия с малыми величинами в виде
,
и диффузионный критерийПекле
.
Равенство
критериев
в сходственных точках подобных систем
– необходимое условие подобия
неустановившихся процессов массоотдачи.
Это равенство характеризует постоянство
отношения изменения концентрации во
времени к изменению концентрации
вследствие чисто молекулярного переноса.
Критерий
выражает
меру отношения массы вещества, перемещаемой
путем конвективного переноса и
молекулярной диффузии, в сходственных
точках подобных систем.
Подобие распределения концентраций и одновременно подобие скоростей в потоках соблюдается в общем случае в геометрически подобных системах при следующих условиях:
;
;
.
Во многих случаях вместо критерия используют отношение критериев и , которое представляет собой диффузионный критерий Прандтля:
.
В
критерий
входят
только величины, отражающие физические
свойства потока. Этот критерий
характеризует постоянство отношения
физических свойств жидкости (газа) в
сходственных точках подобных потоков.
Критерий Прандтля рассматривается как
мера подобия профилей скорости и
концентрации в процессах массоотдачи.
При
1
толщина диффузионного подслоя равна
толщине гидродинамического ламинарного
подслоя.
Необходимой
предпосылкой подобия процессов
массоотдачи является соблюдение
гидродинамического подобия, которое
требует, чтобы в сходственных точках
подобных потоков были равны не только
критерии Рейнольдса, но и критерии
Фруда. Критерий Фруда часто бывает
удобно заменить критерием Галилея (
)
или Грасгофа (
,
где
- коэффициент объемного расширения), в
которые не входит скорость потока.
Определяемой величиной при расчете массоотдачи является коэффициент , величину которого находят из диффузионного критерия Нуссельта. Этот критерий является определяемым.
Полученные критерии подобия дают возможность найти уравнение подобия конвективной диффузии:
,
где Г1, Г2, …Гn – симплексы геометрическое подобие систем, представляющие отношения характерных геометрических размеров l1 , l2 , …ln к некоторому определяющему размеру l0 .
Применительно к конкретным задачам массообмена общее уравнение подобия может быть упрощено. При рассмотрении стационарных процессов из уравнения исключается критерий Фурье
.
При вынужденном движении можно пренебречь естественной конвекцией
или
.
В условиях естественной конвекции
или
.
Расчетные зависимости называются критериальными уравнениями массоотдачи. Численные значения входящих в них постоянных коэффициентов A и показателей степеней n и m устанавливают при обработке опытных данных.