
- •Ано впо «Омский экономический институт»
- •Кафедра технологии продуктов питания
- •Учебно-методический комплекс
- •По дисциплине
- •«Процессы и аппараты пищевых производств»
- •Омск 2008
- •II. Рабочая программа по дисциплине «Процессы и аппараты пищевых производств»
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины и виды учебной работы
- •Содержание дисциплины
- •Разделы дисциплины и вид занятий
- •4.2. Содержание разделов дисциплины
- •4.3.Темы и планы семинарских занятий
- •Лабораторный практикум
- •Самостоятельная работа
- •7. Выполнение курсовой работы Учебным планом не запланировано.
- •9. Учебно-методическое обеспечение дисциплины
- •9.1. Рекомендуемая литература Основная литература
- •Дополнительная литература
- •Курс лекций по дисциплине «Процессы и аппараты пищевых производств»
- •Лекция 1. Общие положения
- •Нами будут рассматриваться процессы, создаваемые в определенных технологических целях.
- •1.1. Классификация основных процессов и аппаратов пищевых производств
- •1.2. Кинетические закономерности основных процессов пищевых производств
- •1.3. Общие принципы расчёта машин и аппаратов
- •Для изолированных систем нет приходов и уходов субстанции:
- •1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов пищевых производств
- •Лекция 2. Гидромеханические процессы
- •2.1. Физические свойства жидкостей и газов
- •Это уравнение можно записать для расчета плотности газа
- •2.2. Гидравлика
- •2.2.1. Гидростатика
- •2.2.2. Практическое приложение уравнения гидростатики
- •Если сосуды заполнены одной жидкостью плотностью , но давления над уровнем жидкости в них неодинаковы и равны и , то
- •2.3. Гидродинамика
- •2.3.1. Основные характеристики движения жидкостей
- •Средняя скорость по сечению трубопровода связана с максимальной скоростью следующим соотношением:
- •2.3.2. Турбулентный режим
- •2.3.3. Дифференциальные уравнения движения Эйлера
- •2.3.4. Дифференциальные уравнения движения Навье–Стокса
- •2.3.5. Уравнение Бернулли
- •2.3.6. Гидродинамическое подобие
- •2.3.7. Гидравлические сопротивления в трубопроводах и каналах
- •2.3.8. Движение тел в жидкостях
- •2.3.9. Движение жидкостей через неподвижные пористые слои
- •2.3.10. Гидродинамика псевдоожиженных слоев
- •2.3.11. Гидродинамика двухфазных потоков
- •2.4. Перемещение жидкостей (насосы)
- •2.4.1. Классификация и области применения насосов
- •2.4.2. Параметры насосов
- •2.4.3. Насосная установка
- •2.4.4. Основное уравнение лопастных машин (уравнение Эйлера)
- •2.4.5. Характеристики центробежных насосов
- •2.5. Сжатие и перемещение газов (компрессоры)
- •2.5.1. Классификация компрессоров
- •2.5.2. Поршневые компрессоры
- •2.5.3. Теоретический рабочий процесс в поршневом компрессоре
- •2.5.4. Производительность действительного поршневого компрессора. Коэффициенты производительности
- •2.5.5. Принцип действия, классификация и устройство турбокомпрессоров
- •2.6. Процессы разделения неоднородных смесей
- •2.6.1. Классификация неоднородных систем и способов
- •2.6.2. Материальные балансы процессов разделения
- •2.6.3. Осаждение
- •2.7. Фильтрование
- •2.8. Перемешивание в жидкой фазе
- •Лекция 3. Тепловые процессы
- •3.1. Способы передачи теплоты
- •3.2. Тепловые балансы
- •3.3. Температурное поле и температурный градиент
- •3.4. Передача тепла теплопроводностью
- •3.5. Тепловое излучение
- •3.6. Конвективный теплообмен
- •3.6.1. Теплоотдача
- •3.6.2. Дифференциальное уравнение конвективного теплообмена
- •3.6.3. Подобие процессов теплообмена
- •3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- •3.6.5. Теплоотдача при изменении агрегатного состояния
- •3.7. Сложный теплообмен
- •3.8. Процессы нагревания, охлаждения и конденсации
- •3.9. Теплообменные аппараты
- •3.9.1. Классификация и типы теплообменных аппаратов
- •3.9.2. Расчет теплообменных аппаратов
- •3.9.3. Рекомендации по выбору и проектированию поверхностных теплообменников
- •3.10. Выпаривание
- •Лекция 4. Основы массопередачи
- •4.1. Общие сведения о массообменных процессах
- •4.1.1. Основное уравнение массопередачи
- •4.1.2. Материальный баланс массообменных процессов
- •4.1.3. Движущая сила массообменных процессов
- •4.1.4. Модифицированные уравнения массопередачи
- •4.1.5. Основные законы массопередачи
- •4.1.6. Подобие процессов переноса массы
- •4.1.7. Связь коэффициентов массопередачи и массоотдачи
- •4.1.8. Массопередача с твердой фазой
- •4.2. Абсорбция
- •4.2.1. Равновесие при абсорбции
- •4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •4.2.3. Cхемы абсорбционных процессов
- •4.2.4. Конструкции колонных абсорбционных аппаратов
- •4.3. Адсорбция
- •4.3.1. Равновесие в процессах адсорбции
- •4.3.2. Конструкции адсорбционных аппаратов
- •4.4. Процессы мембранного разделения смесей
- •4.4.1. Сущность процесса мембранного разделения смесей
- •4.4.2. Мембраны
- •4.4.3. Кинетика процессов мембранного разделения смесей
- •4.4.4. Влияние различных факторов на мембранное разделение
- •4.4.5. Мембранные аппараты
- •4.5. Механические процессы
- •4.5.1. Измельчение твердых материалов
- •4.5.2. Физико-механические основы измельчения
- •4.9.3. Размольно-дробильные машины
- •Тарелка; 2- корпус; 3- дробящая головка; 4- пружина; 5- станина; 6- шаровой
- •Подпятник.
- •4.5.4. Классификация и сортировка материалов
- •Корпус; 2- внутренний конус; 3- распределительный диск; 4- вентилятор;
- •Корпус; 2- внутренний конус; 3- патрубок для ввода исходного сырья; 4,5 – патрубки для отвода крупных частиц; 6- патрубок для вывода воздуха с мелкими частицами; 7- поворотные лопатки
- •IV. Методические указания по выполнению лабораторных работ. Лабораторная работа № 1 Гравитационное осаждение шарообразных частиц.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Лабораторная работа № 2 Гидравлическое сопротивление прямых гладких труб.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Значение фактора формы для прямоугольного сечения
- •Значение фактора формы для треугольного сечения
- •Значение фактора формы для эллиптического сечения
- •Значение фактора формы для кольцевого сечения
- •Лабораторная работа № 3 Передача тепла теплопроводностью через многослойную стенку
- •1. Цель и содержание работы
- •2. Теоретические положения
- •2.1. Плоская стенка
- •2.2. Цилиндрическая стенка
- •3. Описание оборудования
- •4. Порядок выполнения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •Лабораторная работа №4 Определение термического сопротивления изоляции
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Данные по материалам изоляции
- •Лабораторная работа № 5 Теплообменник «труба в трубе».
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •V. Тестовые вопросы по дисциплине «Процессы и аппараты пищевых производств»
- •Методические указания по выполнению контрольной работы по дисциплине «Процессы и аппараты пищевых производств»
- •Исходные расчетные данные по вариантам (задача 1).
- •VII. Экзаменационные вопросы.
2.3.9. Движение жидкостей через неподвижные пористые слои
Во многих процессах пищевых производств имеет место движение жидкостей и газов через неподвижные зернистые и пористые слои.
Форма и размеры элементов зернистых слоев весьма разнообразны: частицы слоев осадка на фильтрах, гранулы, таблетки, кусочки катализаторов или адсорбентов, насадочные тела абсорбционных и ректификационных колонн. При этом зернистые слои могут быть монодисперсными или полидисперсными в зависимости от того, одинаковы или различны по размеру частицы зернистого слоя.
При движении жидкостей или газов через зернистый слой можно считать, что поток одновременно обтекает отдельные элементы слоя и движется внутри каналов неправильной формы, образуемых пустотами и порами между элементами. Изучение такого движения, как указывалось выше, представляет смешанную задачу гидродинамики.
При расчете гидравлического сопротивления зернистого слоя может быть использована зависимость, аналогичная по виду для расчета потерь давления на трение в трубопроводах:
.
(2.8)
Коэффициент в уравнении (2.8) учитывает не только влияние сопротивления трения, но и дополнительные местные сопротивления, появляющиеся при движении жидкостей и газов по искривленным каналам в слое и обтекании его отдельных элементов.
Эквивалентный диаметр, соответствующий суммарному поперечному сечению каналов в зернистом слое, может быть определен следующими характеристиками слоя.
Удельной поверхностью , представляющей собой поверхность элементов, или частиц материала, находящихся в единице объема, занятого слоем.
Долей
свободного
объема, или
порозностью
,
представляющей собой отношение объема
свободного пространства между частицами
к объему всего слоя
,
т.е.
.
Эквивалентным диаметром
,
(2.9)
где
- площадь сечения аппарата, заполненного
зернистым слоем;
-
коэффициент кривизны каналов по толщине
зернистого слоя.
Эквивалентный диаметр может быть выражен также через размер частиц, составляющих слой. Пусть в 1 м3 объема, занимаемого слоем, имеется частиц. Объем самих частиц составляет (1- ), а их поверхность равна .
Средний объем одной частицы равен:
,
ее поверхность
,
где
- фактор формы частицы, представляющий
отношение поверхности шара
,
имеющего тот же объем, что и рассматриваемая
частица с поверхностью
.
Для шарообразной частицы
1.
Отношение поверхности частицы к ее объему
,
откуда
.
(2.10)
Подставим значение в уравнение (2.9) и получим зависимость для расчета эквивалентного диаметра зернистого слоя через размер частиц:
.
В
уравнение (2.8) входит действительная
скорость жидкости (газа) в каналах слоя,
которую определить сложно. Наиболее
целесообразно выразить ее через скорость,
условно отнесенную к полному поперечному
сечению слоя или аппарата. Эту скорость,
равную отношению объемного расхода
жидкости к площади поперечного сечения
слоя, называют фиктивной
скоростью
.
Соотношение между действительной и фиктивной скоростями следующее:
.
Подставив в уравнение (2.8) вместо длины канала высоту слоя , выражения для и , получим
или
.
(2.11)
Величина коэффициента сопротивления зависит от гидродинамического режима, определяемого критерием Рейнольдса, который в соответствии с принятыми обозначениями примет вид
.
(2.12)
При замене в уравнении (2.11) удельной поверхности ее значением из формулы (2.10) получим
,
где
- модифицированный критерий Рейнольдса,
выраженный через фиктивную скорость
жидкости (газа) и размер частиц слоя.
Для расчета коэффициента сопротивления для всех режимов течения рекомендовано обобщенное уравнение следующего вида
.
Для ламинарного режима течения ( 50):
.
Подставим зависимости для и критерия в выражение (2.11) и после преобразования получим
,
(2.13)
где
- коэффициент формы.
Уравнение
(2.13) может быть использовано для расчета
удельного сопротивления осадка в
процессе фильтрования. Его также
применяют для экспериментального
определения фактора
или коэффициента формы
частиц
зернистого слоя. Опыты проводят при
ламинарном режиме течения жидкости
(газа). Их не сложно осуществить путем
измерения сопротивления слоя
,
определения фиктивной скорости
при известных значениях вязкости
жидкости (газа) и других параметрах
зернистого слоя.