- •Ано впо «Омский экономический институт»
- •Кафедра технологии продуктов питания
- •Учебно-методический комплекс
- •По дисциплине
- •«Процессы и аппараты пищевых производств»
- •Омск 2008
- •II. Рабочая программа по дисциплине «Процессы и аппараты пищевых производств»
- •Цели и задачи дисциплины
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины и виды учебной работы
- •Содержание дисциплины
- •Разделы дисциплины и вид занятий
- •4.2. Содержание разделов дисциплины
- •4.3.Темы и планы семинарских занятий
- •Лабораторный практикум
- •Самостоятельная работа
- •7. Выполнение курсовой работы Учебным планом не запланировано.
- •9. Учебно-методическое обеспечение дисциплины
- •9.1. Рекомендуемая литература Основная литература
- •Дополнительная литература
- •Курс лекций по дисциплине «Процессы и аппараты пищевых производств»
- •Лекция 1. Общие положения
- •Нами будут рассматриваться процессы, создаваемые в определенных технологических целях.
- •1.1. Классификация основных процессов и аппаратов пищевых производств
- •1.2. Кинетические закономерности основных процессов пищевых производств
- •1.3. Общие принципы расчёта машин и аппаратов
- •Для изолированных систем нет приходов и уходов субстанции:
- •1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов пищевых производств
- •Лекция 2. Гидромеханические процессы
- •2.1. Физические свойства жидкостей и газов
- •Это уравнение можно записать для расчета плотности газа
- •2.2. Гидравлика
- •2.2.1. Гидростатика
- •2.2.2. Практическое приложение уравнения гидростатики
- •Если сосуды заполнены одной жидкостью плотностью , но давления над уровнем жидкости в них неодинаковы и равны и , то
- •2.3. Гидродинамика
- •2.3.1. Основные характеристики движения жидкостей
- •Средняя скорость по сечению трубопровода связана с максимальной скоростью следующим соотношением:
- •2.3.2. Турбулентный режим
- •2.3.3. Дифференциальные уравнения движения Эйлера
- •2.3.4. Дифференциальные уравнения движения Навье–Стокса
- •2.3.5. Уравнение Бернулли
- •2.3.6. Гидродинамическое подобие
- •2.3.7. Гидравлические сопротивления в трубопроводах и каналах
- •2.3.8. Движение тел в жидкостях
- •2.3.9. Движение жидкостей через неподвижные пористые слои
- •2.3.10. Гидродинамика псевдоожиженных слоев
- •2.3.11. Гидродинамика двухфазных потоков
- •2.4. Перемещение жидкостей (насосы)
- •2.4.1. Классификация и области применения насосов
- •2.4.2. Параметры насосов
- •2.4.3. Насосная установка
- •2.4.4. Основное уравнение лопастных машин (уравнение Эйлера)
- •2.4.5. Характеристики центробежных насосов
- •2.5. Сжатие и перемещение газов (компрессоры)
- •2.5.1. Классификация компрессоров
- •2.5.2. Поршневые компрессоры
- •2.5.3. Теоретический рабочий процесс в поршневом компрессоре
- •2.5.4. Производительность действительного поршневого компрессора. Коэффициенты производительности
- •2.5.5. Принцип действия, классификация и устройство турбокомпрессоров
- •2.6. Процессы разделения неоднородных смесей
- •2.6.1. Классификация неоднородных систем и способов
- •2.6.2. Материальные балансы процессов разделения
- •2.6.3. Осаждение
- •2.7. Фильтрование
- •2.8. Перемешивание в жидкой фазе
- •Лекция 3. Тепловые процессы
- •3.1. Способы передачи теплоты
- •3.2. Тепловые балансы
- •3.3. Температурное поле и температурный градиент
- •3.4. Передача тепла теплопроводностью
- •3.5. Тепловое излучение
- •3.6. Конвективный теплообмен
- •3.6.1. Теплоотдача
- •3.6.2. Дифференциальное уравнение конвективного теплообмена
- •3.6.3. Подобие процессов теплообмена
- •3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- •3.6.5. Теплоотдача при изменении агрегатного состояния
- •3.7. Сложный теплообмен
- •3.8. Процессы нагревания, охлаждения и конденсации
- •3.9. Теплообменные аппараты
- •3.9.1. Классификация и типы теплообменных аппаратов
- •3.9.2. Расчет теплообменных аппаратов
- •3.9.3. Рекомендации по выбору и проектированию поверхностных теплообменников
- •3.10. Выпаривание
- •Лекция 4. Основы массопередачи
- •4.1. Общие сведения о массообменных процессах
- •4.1.1. Основное уравнение массопередачи
- •4.1.2. Материальный баланс массообменных процессов
- •4.1.3. Движущая сила массообменных процессов
- •4.1.4. Модифицированные уравнения массопередачи
- •4.1.5. Основные законы массопередачи
- •4.1.6. Подобие процессов переноса массы
- •4.1.7. Связь коэффициентов массопередачи и массоотдачи
- •4.1.8. Массопередача с твердой фазой
- •4.2. Абсорбция
- •4.2.1. Равновесие при абсорбции
- •4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- •4.2.3. Cхемы абсорбционных процессов
- •4.2.4. Конструкции колонных абсорбционных аппаратов
- •4.3. Адсорбция
- •4.3.1. Равновесие в процессах адсорбции
- •4.3.2. Конструкции адсорбционных аппаратов
- •4.4. Процессы мембранного разделения смесей
- •4.4.1. Сущность процесса мембранного разделения смесей
- •4.4.2. Мембраны
- •4.4.3. Кинетика процессов мембранного разделения смесей
- •4.4.4. Влияние различных факторов на мембранное разделение
- •4.4.5. Мембранные аппараты
- •4.5. Механические процессы
- •4.5.1. Измельчение твердых материалов
- •4.5.2. Физико-механические основы измельчения
- •4.9.3. Размольно-дробильные машины
- •Тарелка; 2- корпус; 3- дробящая головка; 4- пружина; 5- станина; 6- шаровой
- •Подпятник.
- •4.5.4. Классификация и сортировка материалов
- •Корпус; 2- внутренний конус; 3- распределительный диск; 4- вентилятор;
- •Корпус; 2- внутренний конус; 3- патрубок для ввода исходного сырья; 4,5 – патрубки для отвода крупных частиц; 6- патрубок для вывода воздуха с мелкими частицами; 7- поворотные лопатки
- •IV. Методические указания по выполнению лабораторных работ. Лабораторная работа № 1 Гравитационное осаждение шарообразных частиц.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Лабораторная работа № 2 Гидравлическое сопротивление прямых гладких труб.
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Значение фактора формы для прямоугольного сечения
- •Значение фактора формы для треугольного сечения
- •Значение фактора формы для эллиптического сечения
- •Значение фактора формы для кольцевого сечения
- •Лабораторная работа № 3 Передача тепла теплопроводностью через многослойную стенку
- •1. Цель и содержание работы
- •2. Теоретические положения
- •2.1. Плоская стенка
- •2.2. Цилиндрическая стенка
- •3. Описание оборудования
- •4. Порядок выполнения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •Лабораторная работа №4 Определение термического сопротивления изоляции
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •Данные по материалам изоляции
- •Лабораторная работа № 5 Теплообменник «труба в трубе».
- •1. Цель и содержание работы
- •2. Теоретические положения
- •3. Описание оборудования
- •4. Порядок проведения работы
- •5. Обработка результатов
- •6. Требования к отчету
- •7. Контрольные вопросы
- •V. Тестовые вопросы по дисциплине «Процессы и аппараты пищевых производств»
- •Методические указания по выполнению контрольной работы по дисциплине «Процессы и аппараты пищевых производств»
- •Исходные расчетные данные по вариантам (задача 1).
- •VII. Экзаменационные вопросы.
2.3.3. Дифференциальные уравнения движения Эйлера
Рассмотрим установившийся поток идеальной жидкости, движущийся без трения. Как и при выводе дифференциальных уравнений равновесия Эйлера, в потоке движущейся жидкости выделяется элементарный параллелепипед и рассматривается равновесие проекций сил на оси координат. Согласно основному правилу динамики, сумма проекций, действующих на элементарный объем, равна произведению массы жидкости на ее ускорение:
для оси
,
для
оси
,
для оси z
.
Расписав субстанциональные производные проекций скоростей потока по осям пространственных координат:
;
;
и произведя сокращения, получим для соответствующих проекций дифференциальные уравнения жидкости для неустановившегося потока:
;
;
.
Для
установившегося потока:
,
,
,
тогда:
;
;
.
Системы уравнений представляют собой дифференциальные уравнения движения идеальной жидкости Эйлера для неустановившегося и установившегося потоков.
Как будет показано ниже, интегралом уравнений движения Эйлера для установившегося потока является уравнение Бернулли, нашедшее широкое распространение для решения многих технических задач.
2.3.4. Дифференциальные уравнения движения Навье–Стокса
При движении вязкой жидкости в потоке, кроме сил давления и тяжести, действуют также силы трения. Для трехмерного потока проекция равнодействующих сил трения на ось имеет вид:
.
Суммы проекций всех сил на оси координат должны быть равны произведению массы жидкости, заключенной в параллелепипеде, на проекции ускорения на оси координат:
;
;
.
После сокращения получим дифференциальные уравнения Навье – Стокса, описывающее движение вязкой капельной жидкости:
;
;
.
Соответствующие субстанциональные производные в уравнениях могут быть выражены как для неустановившегося, так и установившегося течения жидкости.
Правые части уравнений выражают произведение массы единицы объема на проекцию ускорения, т.е. представляют собой равнодействующие сил инерции, возникающих в движущейся жидкости.
В
левых частях произведение
отражает
влияние сил тяжести, частные производные
,
,
- влияние сил гидростатического давления,
а произведение вязкости на сумму вторых
производных проекций скорости – влияние
сил трения на движущую жидкость. Каждый
член уравнения имеет размерность
соответствующей силы, отнесенной к
единице объема жидкости.
Полное описание движения вязкой жидкости возможно путем решения уравнений Навье–Стокса совместно с дифференциальным уравнением неразрывности потока. Однако уравнения Навье–Стокса не могут быть решены в общем виде.
Решение возможно либо для простых случаев при введении ряда допущений, либо после преобразования этих уравнений методами теории подобия.
2.3.5. Уравнение Бернулли
Решение уравнений движения Эйлера для установившегося потока жидкости приводит к одному из наиболее важных и широко используемых уравнений гидродинамики – уравнению Бернулли.
После умножения левых и правых частей дифференциальных уравнений на и деления их на плотность жидкости получим
.
Сложим
эти уравнения, учитывая, что производные
выражают проекции
скорости на соответствующие оси
координат, и получим
.
Слагаемые левой части уравнения могут быть представлены как
,
,
,
а их сумма
.
В
то же время сумма членов, стоящих в
скобках в правой части записанного
уравнения, представляет собой полный
дифференциал давления
(при
установившихся условиях давление
зависит лишь от положения точки в
пространстве и не меняется со временем).
С учетом этих преобразований получим
.
Разделив
обе части полученного уравнения на
ускорение силы тяжести
и перенеся все члены в левую часть,
найдем
.
Для
несжимаемой изотермической жидкости
сумма дифференциалов может быть заменена
дифференциалом суммы
,
тогда после дифференцирования
.
Для любых двух поперечных сечений неразрывного потока жидкости уравнение имеет вид (рис. 2.10)
.
Уравнение Бернулли описывает движение идеальной жидкости.
Величина
представляет собой полный динамический
напор.
Согласно уравнению Бернулли, для всех поперечных сечений установившегося потока идеальной жидкости величина гидродинамического напора остается неизменной.
Гидродинамический
напор включает три слагаемых, из которых
первые два z
и
входят в основное уравнение гидростатики
и представляют собой: z –
нивелирную высоту, называемую также
геометрическим напором, представляющую
удельную потенциальную энергию положения
в данной точке;
– статический или пьезометрический напор характеризует удельную потенциальную энергию давления положения в данной точке;
– скоростной
или динамический напор характеризует
удельную кинетическую энергию в данной
точке.
Таким
образом, уравнение Бернулли имеет
определенный энергетический смысл,
состоящий в том, что при установившемся
движении идеальной жидкости сумма
удельной потенциальной
и удельной кинетической
энергий жидкости для каждого из поперечных
сечений потока остается величиной
неизменной.
При изменении поперечного сечения трубопровода и соответственно скорости движения жидкости происходит превращение энергии. При сужении трубопровода часть потенциальной энергии давления переходит в кинетическую, и, наоборот, при расширении трубопровода часть кинетической энергии переходит в потенциальную, но общее количество энергии остается постоянным.
Таким образом, уравнение Бернулли является частным случаем закона сохранения энергии и выражает энергетический баланс потока жидкости.
Для соблюдения баланса энергии при движении реальной жидкости в правую часть уравнения Бернулли должен быть введен член, выражающий потерянный напор. Тогда уравнение Бернулли для реальных жидкостей будет иметь вид
.
Потерянный
напор
характеризует удельную энергию,
расходуемую на преодоление гидравлического
сопротивления при движении вязкой
жидкости.
Если умножить обе части уравнения на , можно получить уравнение Бернулли в ином виде:
.
В
уравнении величина
–
потерянное давление, равное
.
Определение потерь напора или давления является практически важной задачей, связанной с расчетом энергии, необходимой для перемещения реальных жидкостей и газов при помощи насосов и компрессоров. Сложность решения этой задачи, как было сказано выше, обусловлена тем, что решение системы дифференциальных уравнений, описывающих движение реальной жидкости, в большинстве случаев оказывается невозможным.
Практические применения уравнения Бернулли. На практике уравнение Бернулли используется для определения скоростей (рис. 2.11) и расходов жидкостей и газов, напора насоса, времени истечения жидкостей из резервуаров. На рис. 2.12 приведена схема измерение расхода с помощью диафрагмы, на рис. 2.13 и 2.14 - с помощью сопла и трубы Вентури.
Р
ис.
2.11. Измерение скорости жидкости
пневмометрической трубкой
Зависимость для определения объемного расхода жидкости через дроссельные устройства (диафрагму, мерное сопло, трубу Вентури) имеет вид:
,
где
– коэффициент расхода дроссельного
прибора. Значения коэффициента
определяются опытным путем и приводятся
в специальной литературе;
– диаметр трубопровода;
–
диаметр наиболее узкого сечения мерного
устройства.
Объемный расход жидкости при истечении через круглое отверстие в днище сосуда с постоянным уровнем жидкости:
.
Из уравнения следует, что расход жидкости, вытекающей через отверстие в тонком днище, зависит от высоты постоянного уровня жидкости над отверстием и от размера отверстия, но не зависит от формы сосуда (рис. 2.15).
С
помощью уравнения Бернулли можно также
определять время опорожнения сосуда
от жидкости, имеющего постоянное
поперечное сечение, от высоты
до
:
,
а также решать другие прикладные задачи, например, вычислять напор насоса.
