Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5_rozdil_1-20.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
99.34 Кб
Скачать

17.Основні види логічних відношень між формулами мови логіки висловлювань: еквівалентність, логічний наслідок, сумісність.

Між певними формулами логіки висловлювань існує відношення логічного слідування. Це означає: якщо із формули виду слідує формула виду то кожен раз, коли формула Р є істинною, то й формула Р2 є істинною. Формальний вираз відношення логічного слідування: Р, -" Р2.

На підставі встановлення відношення рівносильності та слідування здійснюють операцію доведення певних формул на істинність за правилами виведення. Операція доведення - невід'ємна частина будь-якого числення висловлювань.

Числення логіки висловлювань - система символів і правил логічного виведення із аксіом довільних формул або теорем з метою їх доведення на істинність. Розрізняють натуральне й аксіоматичне числення логіки висловлювань.

Натуральне числення логіки висловлювань відтворює логічну будову звичайних міркувань. Вперше натуральні числення розробили незалежно один від одного польський логік С. Яськовський (1906-1965) і німецький логік Г. Генцен (1907-1945) у 30-х роках XX ст.

Розглянемо одну із систем натурального числення, яку позначимо літерою 5. Основні правила системи 5.

1. Правила логічного слідування

(А -> В, А) -" В (правило модус поненс); (А -" В, -і В) -" -" А (правило модус толленс); (А, В) -> А л В (правило ВК - введення кон'юнкції); (А л В) -> А; (А л В) -> В (правило УК - усунення кон'юнкції);

А-> (А v В); В -" (А v В) (правило ВД - введення диз'юнкції);

(А 1 В, А) -" -і В; (А 1 В, - В) -" А (правило УД - усунення диз'юнкції);

((А -> В, В -> А)) -" (А = В) (правило ВЕ - введення еквівалентності);

(А = В) -> (А -> В); (А = В) -"(В -> А) (правило УЕ - усунення еквівалентності));

А -> -і -і А (правило (В32) - введення подвійного заперечення);

-" -і А -> А (правило У32 - усунення подвійного заперечення).

2. Правила побудови доведення.

2.1. Правила побудови прямого доведення. Пряме доведення формули А1 -> (А2 ... (Ая -> С) будується в такий спосіб. На будь-якому кроці доведення можна визначити:

1. Одну із формул А., А2,... Ап як припущення.

2. Формулу, що випливає з раніше невизначених формул за правилами логічного слідування.

3. Раніше доведену формулу.

Пряме доведення формули вважають побудованим, якщо відповідно до 1-3 ми отримуємо послідовність формул, котрі завершуються формулою С.

2.2. Непряме доведення формули А, -> (А2 -" (Ал -> С) будується так: На будь-якому кроці доведення можна визначити:

1. Одну з формул А,, А2,... Ая як припущення.

2. Формулу, що суперечить формулі С.

3. Формулу, що випливає з раніше визначених формул за одним із правил логічного слідування.

4. Раніше доведену формулу.

Аксіоматична побудова числення висловлювань

Логічні системи такого типу називаються гільбертовськими за ім'ям німецького математика Д. Гільберта (1862-1943). Порівняно із системами натурального числення в численнях гільбертовського типу формальна структура доведення суттєво відрізняється від логічної будови звичних міркувань.

У процесі побудови числень висловлювань гільбертовського типу вибирають кінцевий запас логічних тотожностей як аксіом і зазначають правила, за допомогою котрих можна отримати з аксіом нові логічні тотожності як теорем відповідної логічної системи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]