
- •Рациональные уравнения
- •Линейные уравнения.
- •Системы линейных уравнений.
- •Теорема Виета.
- •Возвратные уравнения.
- •Формулы Виета для многочленов высших степеней.
- •Системы уравнений второй степени.
- •Метод введения новых неизвестных при решении уравнений и систем уравнений.
- •Однородные уравнения.
- •Решение симметрических систем уравнений.
- •Уравнения и системы уравнений с параметрами.
- •Графический метод решения систем нелинейных уравнений.
- •Уравнения содержащие знак модуля.
- •Основные методы решения рациональных уравнений.
Возвратные уравнения.
Уравнение вида
anxn + an – 1 xn – 1 + … +a1x + a0 = 0
называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, то есть если
an – 1 = ak, при k = 0, 1, …, n.
Рассмотрим возвратное уравнение четвёртой степени вида
ax4 + bx3 + cx2 + bx + a = 0,
где a, b и c — некоторые числа, причём a 0. Его удобно решать с помощью следующего алгоритма:
разделить левую и правую части уравнения на x2. При этом не происходит потери решения, так как x = 0 не является корнем исходного уравнения при a 0;
группировкой привести полученное уравнение к виду
a(x2 + 1 / x2) + b(x + 1 / x) + c = 0;
ввести новую переменную t = x + 1 / x, тогда выполнено
t2 = x2 + 2 + 1 / x2, то есть x2 + 1 / x2 = t2 – 2;
в новых переменных рассматриваемое уравнение является квадратным:
at2 + bt + c – 2a = 0;
решить его относительно t, возвратиться к исходной переменной.
Для возвратных уравнений более высоких степеней верны следующие утверждения.
Возвратное уравнение чётной степени сводится к уравнению вдвое меньшей степени подстановкой
x + 1 / x = t.
Возвратное уравнение нечётной степени обязательно имеет корень x= -1 и после деления многочлена, стоящего в левой части этого уравнения, на двучлен x + 1, приводится к возвратному уравнению чётной степени.
Пример 4.21. Рассмотрим, например, возвратное уравнение пятой степени
ax5 + bx4 + cx3 + cx2 + bx + a = 0
Легко видеть, что x = – 1 является корнем этого уравнения, а потому по теореме Безу многочлен в левой части уравнения делится на x + 1. В результате такого деления получится возвратное уравнение четвёртой степени.
Довольно часто в процессе решения задач вступительных экзаменов возникают рациональные уравнения степени выше второй, которые не удаётся решить с помощью очевидной замены переменной. В этом случае попытайтесь отгадать какой-нибудь корень уравнения. Если попытка окажется успешной, то Вы воспользуетесь следствием 1 теоремы Безу и понизите на единицу степень исходного уравнения. “Кандидатов” в корни многочлена с целочисленными коэффициентами следует искать среди делителей свободного члена этого многочлена. Если же попытка угадать корни не удалась, то, возможно, Вы избрали “не тот” метод решения, и существует иной метод, реализация которого не требует решения уравнения третьей или большей степени.
Формулы Виета для многочленов высших степеней.
Пусть многочлен P (x) = a0xn + a1xn – 1 + … + an
имеет n различных корней X1, X2, …, Xn. В этом случае он имеет разложение на множители вида
a0xn + a1xn – 1 + … + an = a0(x – x1)(x – x2)…(x – xn).
Разделим обе части этого равенства на a0 0 и раскроем скобки. Получим равенство
Xn + (a1 / a0)xn – 1 + … + (an / a0) =
= xn – (x1 + x2 + … +xn)xn – 1 + (x1x2 +x1x3 + … +xn-1xn)xn – 2 +
+ … + (-1)nx1x2…xn.
Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняются равенства
x1 + x2 + … + xn = -a1 / a0,
x1x2 + x1x3 + … + xn – 1xn = a2 / a0,
…………………….
x1x2 … xn = (-1)nan / a0.
Пример 5.22. Напишем кубическое уравнение, корни которого являются квадратами корней уравнения x3 – 3x2 + 7x + 5 = 0.
Решение. Обозначим корни заданного уравнения через x1, x2 и x3. Тогда по формулам Виета имеем
1 = x1 + x2 +x3 = 3,
2 = x1x2 + x1x3 + x2x3 = 7,
3 = x1x2x3 = – 5.
Корни искомого уравнения обозначим буквами y1, y2, y3, а его коэффициенты — буквами b1, b2, b3, положив коэффициент при y3 равным 1. По условию должны выполняться равенства y1 = x12, y2 = x22, y3 = x32 и поэтому
b1 = – (y1 + y2 + y3) = – (x12 + x22 + x32),
b2 = y1y2 + y1y3 + y2y3 = x12x22 + x12x32 + x22x32,
b3 = – y1y2y3 = – x12x22x32 .
Но имеем
x12 + x22 + x32 = (x1 + x2 +x3)2 – 2(x1x2 + x1x3 + x2x3) = 12 - 2 2 = 32 – 2 7 = – 5,
x12x22 + x12x32 + x22x32 = (x1x2 + x1x3 + x2x3)2 – 2x1x2x3(x1 + x2 +x3)= 22 – 2 1 3 = = 72 – 2 3 (– 5)= 79,
x12x22x32 = (x1x2x3)2 = 32 = 25.
Значит, b1 = 5, b2 = 79, b3 = – 25, и потому искомое уравнение имеет вид
y3 + 5y2 + 79y – 25 = 0.
Ответ: y3 + 5y2 + 79y – 25 = 0.