
- •Содержание
- •1. Устройство вагранок
- •2.Ведение плавки
- •2. Ваграночный процесс
- •3. Основные размеры вагранок
- •4. Диаметр вагранки
- •5. Полезная высота
- •6. Сечение фурм
- •7. Глубина горна
- •8. Давление дутья
- •9. Применение для ваграночной плавки чугуна различных видов топлива
- •9.1. Антрацит
- •9.2. Древесный уголь
- •9.3. Торфяной кокс
- •9.4. Воздушно-сухой торф
- •9.6. Дрова
- •10. Типы вагранок
- •12.Железоуглеродистые сплавы. Диаграммы состояния железо-углерод.
- •10.1. Структуры железоуглеродистых сплавов
- •10.2. Компоненты и фазы железоуглеродистых сплавов
- •10.3 Процессы при структурообразовании железоуглеродистых сплавов
10.3 Процессы при структурообразовании железоуглеродистых сплавов
Линия ABCD – ликвидус системы. На участке AB начинается кристаллизация феррита ( ), на участке ВС начинается кристаллизация аустенита, на участке СD – кристаллизация цементита первичного.
Линия AHJECF – линия солидус. На участке AH заканчивается кристаллизация феррита ( ). На линии HJB при постоянной температуре 1499градусовС идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита ( ), в результате чего образуется аустенит:
На участке JE заканчивается кристаллизация аустенита. На участке ECF при постоянной температуру 1147градусовС идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3% углерода превращается в эвтектическую смесь аустенита и цементита первичного:
Эвтектика системы железо – цементит называется ледебуритом (Л), по имени немецкого ученого Ледебура, содержит 4,3% углерода.
При температуре ниже 727градусовС в состав ледебуритов входит цементит первичный и перлит, его называют ледебурит превращенный (ЛП). По линии HN начинается превращение феррита ( ) в аустенит, обусловленное полиморфным превращением в железо. По линии NJ превращения феррита ( ) в аустенит заканчивается.
По линии GS превращение аустенита в феррит, обусловленное полиморфным превращением в железа. По линии PG превращение аустенита в феррит заканчивается.
По линии ES начинается выделение цементита вторичного из аустенита, обусловленное снижением растворимости углерода в аустените при понижении температуры.
По линии МО при постоянной температуре 768градусовС имеет место магнитные превращения.
По линии PSK при постоянной температуре 727градусовС идет эвтектоидное превращение, заключающееся в том, что аустенит, содержащий 0,8% углерода, превращается в эвтектоидную смесь феррита и цементита вторичного:
По механизму данное превращение похоже на эвтектическое, но протекает в твердом состоянии.
Эвтектоид системы железо – цементит называется перлитом (П), содержит 0,8% углерода.
Название получил за то, что наполированном и протравленном шлифе наблюдается перламутровый блеск.
Перлит может существовать в зернистой и пластинчатой форме, в зависимости от условий образования.
По линии PQ начинается выделения цементита третичного из феррита, обусловленное снижением растворимости углерода в феррите при понижении температуры.
Температуры, при которых происходит фазовые и структурные превращения в системах железо – цементит, т.е. критические точки, имеют условное обозначения.
Обозначаются буквой А (от французского аrret – остановка):
А1 – линия PSK (727градусовС) – превращение П – А ;
А2 – линия МО (768градусовС, т. Кюри) – магнитные превращения;
А3 – линия GOS (переменная температура зависящая от содержания углерода в сплаве) – превращение Ф – А;
А4 – линия NJ (переменная температура зависящая от содержания углерода в сплаве) – превращение А – Ф ( ) ;
Acm – линия SE (переменная температура зависящая от содержания углерода в сплаве) – начало выделения цементита вторичного (иногда обозначается А3).
Так как при нагреве и охлаждении превращения совершаются при различных температурах, что бы отличить эти процессы вводятся дополнительные обозначения. При нагреве добавляют букву с, т.е. Ас1, при охлаждении – букву r, т.е. Ar1.
11. СЧ 35
В
основу стандартизации серого
чугуна заложен
принцип регламентирования минимально
допустимого значения временного
сопротивления разрыву при растяжении
(
В).
В соответствии с этим принципом
обозначение марки чугуна
содержит минимально допустимое
значение
В определенного
в стандартной пробной литой заготовке.
Механические свойства серого чугуна
регламентируются ГОСТ 1412-85 и приведены
в табл.1.2. Необходимо учитывать, что
порядок подготовки и проведения
механических испытаний серого и других
чугунов отличаются от методов испытания
стали. Например, для чугунных отливок
контроль свойств проводят по ГОСТ
27208-87 «Отливки из чугуна. Методы
механических испытаний», а способы
получения заготовок для образцов из
каждого чугуна регламентированы
соответствующим стандартом (для серого
– ГОСТ 24648 –81).
Таблица 1.1 - Механические свойства и рекомендуемые составы серого чугуна (ГОСТ 1412-85)
K большинству чугунных отливок в силу особенностей их эксплуатации часто предъявляются различные условия, включающие другие (не предусмотренные ГОСТ 1412-85) требования по механическим свойствам, а также по физическим и теплофизическим показателям. На практике достаточно часто удается проследить связь между определенной группой физико-механических и теплофизических свойств чугуна и эксплуатационными показателями конкретного изделия. Наиболее часто встречающиеся показатели механических свойств серого чугуна, часть из которых не регламентируется ГОСТ 1412-85, приведены в табл.1.2-1.4.
Большое влияние на механические свойства чугуна имеет скорость охлаждения металла, а, следовательно, и толщина стенок отливок. В этом случае при оценке реальной прочности отливок рекомендуется изготавливать различного рода тестовые заготовки, которые соответствуют толщине отливок, и из них вырезать образцы для испытаний. Определенные представления о влиянии толщины стенки отливки на прочность и твердость чугуна можно получить, воспользовавшись данными табл.1.6.
Таблица 1.2 – Механические свойства серого чугуна при растяжении и изгибе
Основные показатели, характеризующие физические свойства чугуна (плотность, удельная теплоемкость, теплопроводность и коэффициент линейного расширения), приведены в табл.1.6 в соответствии с приложением № 2 ГОСТ 1412-85. Данные такого рода имеются также в стандартах других стран, например, Британский стандарт BS 1452 1977.
Модуль упругости чугуна зависит от размеров графитных пластин и уменьшается с увеличением их размера. Более высокий уровень пластичности серый чугун с пластинчатым графитом показывает при сжатии. Например, осадка серого чугуна в холодном состоянии при сжатии может составлять 20 – 40 %. При растяжении пластичность, как видно из табл. 1.2, не достигает и 1 % удлинения.
Таблица 1.3 – Механические свойства серого чугуна при сжатии
Таблица 1.4 – Механические свойства серого чугуна при кручении
Обобщая имеющиеся в литературе данные, необходимо заметить, что плотность чугуна тем выше, чем ниже содержания в нем углерода и кремния. Коэффициенты теплового расширения и удельной теплоемкости зависят не столько от химического состава чугуна, сколько от его структуры. При этом легирующие элементы слабо влияют на эти коэффициенты. Исключение составляет только медь. Теплопроводность чугуна, связанная с теплопроводностью структурных составляющих, оказывается наибольшей при максимальном содержании графита.
Таблица 1.5 - Зависимость прочности ( В) и твердости (НВ) серого чугуна от толщины стенок отливок
Таблица 1.6 – Физические свойства чугуна с пластинчатым графитом (ГОСТ 1412-85)
Как конструкционный материал серый чугун используются для широкого спектра изделий практически во всех отраслях машиностроительного комплекса. К числу наиболее крупных потребителей чугунного литья следует отнести автомобилестроение, станкостроение, тяжелое и металлургическое машиностроение, санитарно-техническую промышленность и пр.
В конструкции автомобилей и тракторов масса литых деталей из серого чугуна, например, составляет 15-25% от общей массы. Преимущественное применение серого чугуна обусловлено тем фактом, что в нем сочетаются высокая износостойкость и противозадирные свойства при трении с ограниченной смазкой, демпфирующая способность. Основная номенклатура изделий - это блоки, головки и гильзы цилиндров, крышки коренных подшипников двигателей, тормозные диски и диски сцепления, тормозные барабаны и другие детали, для которых серый чугун яв-ляется оптимально технологичным и экономичным конструкционным материалом.
Блоки цилиндров карбюраторных и дизельных двигателей изготавливают из низколегированных чугунов марки СЧ20, СЧ25, которые обеспечивают в стенках отливок толщиной 15-25 мм В =200-250 Н/мм2, а в более тонких стенках до 270 Н/мм2. Такого же типа чугуны обычно применяют для головок цилиндров дизельных двигателей и гильз цилиндров карбюраторных и дизельных двигателей. Основными требованиями к чугуну для гильз являются: перлитная структура матрицы (не более 5% феррита), графит среднепластинчатый неориентированный, твердость в пределах 200-250 НВ. В конструкции автомобильных дизельных, карбюраторных, а также тракторных двигателей широко применяют гильзы цилиндров из специальных легированных чугунов, чаще всего - фосфористые.
Для блоков и головок цилиндров тяжело нагруженных дизельных двигателей (автомобильных и судовых) применяют специальные легированные чугуны, а для головок цилиндров - высокоуглеродистые (более 3,5% С) легированные термостойкие чугуны. Эти требования выполняются при использовании для отливки гильз низколегированных чугунов, химический состав которых выбирают с учетом технологии формы, метода плавки, сечения отливки.
Чугунные распределительные валы дизельных и карбюраторных двигателей (легированные чугуны марки СЧ 25 и СЧ 30) имеют высокую износостойкость и широко применяются в автомобилестроении. Легирование молибденом, хромом, никелем обеспечивает хорошую закаливаемость и прокаливаемость чугуна, и заданную глубину отбеленного слоя (в отбеленных кулачках). Высокая твердость и износостойкость кулачков достигаются либо за счет поверхностной закалки чугуна, в структуре которого (в носике кулачков) имеются игольчатые карбиды, либо за счет поверхностного отбела чугуна в кулачках при кристаллизации в контакте с холодильником. Отбеленные кулачки предпочтительны в тяжелых условиях работы.
Тормозные диски, барабаны и нажимные диски сцепления, работающие в условиях сухого трения с высокими скоростями скольжения должны обеспечивать в паре с фрикционной пластмассой стабильный коэффициент трения и износостойкость. При многократных циклах торможения, во время которых в контакте фрикционной пары выделяется тепло, а затем быстро отводится, на поверхности чугунной детали образуются термические трещины, снижающие прочность. Для тормозных барабанов и дисков средней нагруженности чаще всего применяют серый чугун марки СЧ20 или СЧ25. В условиях высокой нагруженности деталей, когда на поверхности трения образуются термические трещины, применяют специальные высокоуглеродистые термостойкие чугуны с повышенным уровнем легирования. Для наиболее тяжелых условий работы рекомендуется использовать перлитные чугуны с вермикулярным графитом.
Маховики в процессе работы вращаются с частотой порядка 2500-8000 об/мин. Соответственно, в них возникают большие растягивающие напряжения, а поверхность маховика периодически трется о сопряженную рабочую поверхность. Трение с большими скоростями приводит к выделению тепла на поверхности трения, образованию усталостных термических трещин, снижающих прочность маховика. Требования повышенной прочности с учетом большой массы маховиков и толщины сечения обусловили применение для их изготовления серых чугунов марки СЧ25, СЧ30, СЧ35 (чем больше сечение отливки, тем выше марка). Выбранная марка чугуна должна обеспечивать получение в теле отливки прочности не ниже 200-250 Н/мм2. Если прочность чугуна СЧ 35 недостаточна для обеспечения условий работы маховиков, то необходимо применять чугуны с вермикулярным или шаровидным графитом.
Крышки коренных подшипников из серого чугуна применяют в основном в карбюраторных двигателях легковых автомобилей. Для обеспечения перлитной структуры и твердости не менее 200 НВ крышки подшипников отливают из серого чугуна марки СЧ25. Для тяжело нагруженных карбюраторных двигателей и для дизельных двигателей применяют крышки подшипников из ковкого чугуна или чугуна с шаровидным графитом.
Выпускные коллекторы подвергаются воздействию горячих агрессивных выхлопных газов и в процессе работы подвержены окислению, термическим деформациям, а иногда - растрескиванию. Во многих случаях серый чугун является экономичным и достаточно долговечным материалом для этих деталей. Учитывая, что коллекторы имеют тонкие стенки (3-7 мм), их отливают из чугунов марки СЧ15, СЧ20, которые для повышения жаростойкости легируют небольшими добавками хрома и никеля. Для термически нагруженных коллекторов применяют ковкий чугун, чугун с шаровидным графитом, а иногда - аустенитный чугун с шаровидным графитом, имеющим высокую термостойкость и стойкость против окисления.
В станкостроении серый чугун применяют для широкой номенклатуры литых деталей с массой от 0,1 кг до 100 тонн с толщиной стенок от 4 до 200 мм, работающих в самых разнообразных условиях. Классификация станкостроительных литых деталей из серого чугуна с учетом этого разнообразия конструкций и условий работы осуществляется в соответствии с ОСТ 2 МТ 21-2-83. При выборе марки чугуна конструктор в зависимости от класса, группы детали и приведенной толщины стенки отливки определяет необходимый минимальный уровень твердости и микроструктуры.
С учетом специфики большинства станкостроительных деталей, работающих преимущественно на жесткость, а не на прочность, предпочтение отдают чугунам, обладающим повышенной твердостью и пониженной пластичностью. Такие чугуны по химическому составу отличаются повышенным (против рекомендаций ГОСТ 1412-85) содержанием кремния и марганца при пониженном содержании углерода. Если невозможно получить необходимый уровень твердости чугуна, в направляющих применяют легирование, формовку с холодильниками и др.
Отливки из серого чугуна весьма широко и успешно используются для определенной номенклатуры деталей сменного металлургического оборудования: сорто- и листопрокатные валки, всевозможные изложницы для разливки слитков, шлаковые чаши и т.п.