
Особо значимые факторы риска
Дислипидемии
Нарушения липидного обмена (дислипидемии), в первую очередь повышенное содержание в крови холестерина, триглицеридов и атерогенных липопротеинов (гиперлипидемии, ГЛП) являются важнейшим фактором риска атеросклероза и патогенетически связанных с ним заболеваний сердечно-сосудистой системы (ИМ, хронических форм ИБС, мозгового инсульта, облитерирующего атеросклероза артерий нижних конечностей и др.). Показано, что концентрация в плазме крови общего холестерина (ХС) или его фракций, тесно коррелирует с заболеваемостью и смертностью от ИБС и других последствий атеросклероза. Самый низкий уровень смертности от ИБС наблюдается при концентрации общего ХС ниже 200 мг/дл (5,2 ммоль/л). При его концентрации в пределах 5,3-6,5 ммоль/л регистрируется умеренное повышение показателей смертности от ИБС. Более высокие концентрации общего ХС (свыше 7,8 ммоль/л) ассоциируются с резким увеличением числа летальных исходов.
Содержание общего ХС ниже 5,2 ммоль/л считается оптимальным или, точнее, “желательным” уровнем. Уровень общего ХС 5,3-6,5 ммоль/л считается пограничным, от 6,6 до 7,7 ммоль/л – повышенным, а выше 7,8 ммоль/л – высоким. В большинстве западных стран высокий уровень общего ХС встречается примерно у 25 % взрослого населения. Для ХС ЛНП “желательный” уровень составляет менее 130 мг/дл (менее 3,4 ммоль/л), пограничный – 130-159 мг/дл (3,4-4,1 ммоль/л). За “желательный” уровень триглицеридов (ТГ) принимают его значения меньше 1,7 ммоль/л или 130 мг/дл.
Поэтому знание нарушений липидного обмена является обязательным условием эффективной профилактики сердечно-сосудистых заболеваний, определяющих по сути прогноз жизни, трудоспособность и физическую активность в быту большинства людей преклонного возраста во всех экономически развитых странах.
В плазме (сыворотке) крови присутствуют три основных класса липидов:
1) холестерин (ХС) и его эфиры;
2) триглицериды (ТГ);
3) фосфолипиды (ФЛ).
Наибольшее значение в атерогенезе имеют холестерин и триглицериды. Основной транспортной формой липидов являются, как известно, липопротеины (ЛП), в которых ХС, ТГ и ФЛ связаны с белками – апопротеинами.
Все ЛП имеют сходную структуру (Структура липопротеинов). Они состоят:
1) из центральной части (“ядра”), содержащей нерастворимые в воде липиды (эфиры ХС, ТГ, жирные кислоты);
2) из оболочки, состоящей из особых белковых молекул (апопротеинов) и растворимых в воде липидов – неэстерифицированного ХС и ФЛ.
Молекулы апопротеинов играют роль своеобразного детергента. Они имеют неполярный гидрофобный участок, который связан с липидами, и полярный гидрофильный участок, расположенный на поверхности сферической частицы ЛП и обращенный к окружающей липопротеин водной среде (плазме крови). Гидрофильный участок апопротеина образует водорастворимые связи с молекулами воды. Такая структура ЛП определяет их свойство быть частично водорастворимыми, а частично – жирорастворимыми.
Апопротеины, входящие в состав оболочки ЛП, играют важную роль не только в транспорте липидов к местам их утилизации, но и во многом определяют весь сложный метаболизм липидов. Так, апопротеины В и Е, входящие в состав оболочки атерогенных ЛП низкой и очень низкой плотности (ЛНП и ЛОНП), распознаются специфическими рецепторами гепатоцитов, которые осуществляют захват и поглощение этих липидных частиц. Апопротеины А-I и С-II, локализующиеся на поверхности ЛВП, ЛОНП и хиломикронов (ХМ), активируют некоторые ключевые ферменты липидного обмена, например липопротеинлипазу, которая гидролизует ТГ хиломикронов, ЛОНП и т.д.
В зависимости от плотности и размеров частиц различают несколько их классов. Хиломикроны (ХМ) почти полностью (на 80-95%) состоят из ТГ. Они являются основной транспортной формой экзогенных (пищевых) ТГ, перенося их из тонкого кишечника в скелетную мускулатуру, миокард и жировую ткань. В плазме крови они расщепляются под действием липопротеинлипазы до глицерина и свободных неэстерифицированных жирных кислот (НЭЖК). Последние используются в периферических органах в качестве энергетического субстрата (β-окисление жирных кислот). Остатки ХМ (ремнанты) захватываются гепатоцитами и сравнительно быстро удаляются из кровотока: через несколько часов после приема пищи они уже не обнаруживаются в плазме крови.
Липопротеины очень низкой плотности (ЛОНП) – это крупные и “рыхлые” ЛП, содержащие около 55% ТГ, 19% ХС и только 8% белка (апопротеинов В-100, Е, С-I и С-II). Этот класс ЛП является главной транспортной формой эндогенных ТГ, синтезируемых в печени. Поступая в кровь, ЛОНП также подвергаются воздействию липопротеинлипазы, локализующейся в том числе на поверхности сосудистого эндотелия. В результате происходит расщепление ТГ на глицерин и НЭЖК, которые также используются жировой тканью, миокардом и скелетной мускулатурой в качестве энергетического субстрата. Остатки ЛОНП превращаются в ЛП промежуточной плотности (ЛПП), которые затем частично удаляются печенью из кровотока, а частично трансформируются в ЛП низкой плотности (ЛНП) и тоже удаляются из кровотокаЛипопротеины низкой плотности (ЛНП) представляют собой более мелкие частицы, которые являются основной транспортной формой ХС. Они содержат около 6% ТГ, максимальное количество ХС (50%) и 22% белка. Примерно 2/3 быстрообменивающегося пула ХС синтезируется в организме, преимущественно в печени (эндогенный ХС), и только 1/3 поступает в организм с пищей (экзогенный ХС). Следует помнить, что ключевым ферментом, определяющим скорость синтеза эндогенного ХС, является гидроксил метил-глутарил-КоА-редуктаза (ГМГ-КоА-редуктаза).
Дальнейший метаболизм ЛНП может происходить двумя путями. Первый из них в норме значительно преобладает и заключается в захвате ЛНП специфическими рецепторами гепатоцитов, имеющими сродство к апопротеинам В и Е, расположенным на поверхности ЛНП.. Захваченные печеночной клеткой частицы поглощаются гепатоцитами и подвергаются гидролизу с образованием свободного ХС, белка и жирных кислот, которые затем утилизируются клетками.
Характерно, что уровень внутриклеточного свободного ХС является важнейшим фактором, регулирующим активность ГМГ-КоА-редуктазы и скорость синтеза специфических ЛНП-рецепторов гепатоцитов, с помощью которых осуществляется захват новых частиц ЛНП, циркулирующих в крови (рис.6). Так, при снижении содержания внутриклеточного ХС возрастает активность ГМГ-КоА-редуктазы и, соответственно, скорость синтеза эндогенного ХС. Одновременно увеличивается синтез ЛНП-рецепторов гепатоцита и активизируется захват и поглощение ЛНП из кровотока и их внутриклеточный катаболизм. В результате содержание ХС внутри клетки восстанавливается. Наоборот, при высокой внутриклеточной концентрации свободного ХС замедляется синтез эндогенного ХС и ЛНП-рецепторов и уровень внутриклеточного ХС постепенно нормализуется. Описанный принцип обратной связи между внутриклеточной концентрацией ХС и скоростью метаболических процессов успешно используется в настоящее время для лечения некоторых нарушений липидного обмена.
Второй путь катаболизма ЛНП – это свободнорадикальное перекисное окисление ЛНП. Свободные радикалы, образующиеся в организме человека в процессе обмена веществ, являются, как известно, высокоактивными и нестабильными молекулами, которые легко окисляют ХС ЛНП. В результате образуются так называемые модифицированные (окисленные) ЛНП, которые плохо распознаются В- и Е-рецепторами гепатоцитов и поэтому не участвуют в описанном выше нормальном физиологическом пути катаболизма ЛНП. Окисленные ЛП захватываются макрофагами, которые при этом трансформируются в пенистые клетки, входящие в состав атеросклеротических бляшек (см. рис.6). Кроме того, модифицированные ЛНП вызывают повреждение сосудистого эндотелия, запуская целый каскад патологических реакций со стороны сосудистой стенки. В норме процессы перекисного окисления липидов слабо выражены. Они существенно усиливаются при различных заболеваниях сердечно-сосудистой системы, в частности, при атеросклерозе, являясь одним из важных этиологических факторов, способствующих возникновению и прогрессированию заболевания.
Липопротеин (a), или ЛП (a), близок по своим физико-химическим свойствам к ЛНП, отличаясь от них наличием в оболочке дополнительного белка – апопротеина a. Последний близок по своим свойствам к плазминогену и поэтому может конкурировать с плазминогеном за места связывания на фибрине и, таким образом, ингибировать фибринолитическую активность крови. ЛП (a) относятся к числу атерогенных ЛП: их повышенный уровень в крови почти всегда ассоциируется с развитием атеросклероза и ИБС, а также с высоким риском тромботических осложнений.
Липопротеины высокой плотности (ЛВП) – самые мелкие и плотные частицы ЛП. Они содержат всего 5% ТГ, 22% ХС и самое большое количество белка (40%) – апопротеинов А-I, А-II и С и относятся к ЛП, обладающим антиатерогенными свойствами. Последние определяются участием ЛВП в катаболизме всех остальных ЛП, поскольку с помощью ЛВП осуществляется обратный транспорт ХС из периферических органов, в том числе из артериальной стенки, с поверхности хиломикронов и ЛОНП, макрофагов и гладкомышечных клеток, в печень, где происходят его утилизация и превращение в желчь. Синтез “зрелых” частиц ЛВП как раз и осуществляется благодаря присоединению свободного ХС от других ЛП и периферических тканей к начальным формам ЛВП, имеющим форму дисков. Синтез полноценных сферических ЛВП происходит, таким образом, при обязательном участии ХМ, ЛОНП и ЛНП. Кроме того, ЛВП в процессе метаболизма ХМ, ЛОНП и ЛНП присоединяют к себе их апопротеины А и С, оказывающие влияние на активность многочисленных ферментных систем, участвующих в метаболизме липидов.
Сама трансформация начальных дискоидных форм ЛВП, синтезированных в печени, в “зрелые” сферические частицы происходит в результате поглощения с поверхности ХМ, ЛОНП и периферических тканей свободного ХС и его эстерификации. Образование эфиров ХС, поглощаемых ЛВП, осуществляется при обязательном участии фермента лецитин-холестерин-ацилтрансферазы (ЛХАТ), присутствующей в начальных дискоидных формах ЛВП. В последующем часть эстерифицированного ХС переносится с ЛВП на остатки (ремнанты) ЛОНП, ХМ и ЛПП, которые захватываются и поглощаются гепатоцитами.
Таким образом, ЛВП как бы защищают сосудистую стенку и другие периферические ткани от избыточного содержания ХС, поддерживая высокую скорость обмена липидов. Снижение содержания ЛВП в плазме крови, наряду с увеличением уровня ЛНП, сопровождается значительным увеличением риска развития атеросклероза и его последствий.
|
Артериальная гипертензия Высокая распространенность АГ среди населения экономически развитых стран (более 20%) придает ей особую важность в качестве фактора риска ИБС, сердечной недостаточности и др. Артериальная гипертензия оказывает существенное влияние на скорость прогрессирования атеросклероза. Причем имеет значение как систолическая, так и диастолическая АГ. Следует подчеркнуть, что в последние годы особое значение придается “мягкой” форме АГ с уровнем АД от 140/90 до 159/99 мм рт. ст., что связано прежде всего с высокой частотой выявления именно этой формы заболевания. Риск возникновения клинических проявлений атеросклероза у больных с АГ, в целом, примерно в 3-4 раза выше, чем у пациентов без сопутствующей артериальной гипертензии. Курение По современным представлениям степень риска, связанного с курением сигарет, сопоставима с риском гиперлипидемии и АГ. Вместе с тем значение курения как ФР ИБС особенно велико в связи с широким распространением среди населения этой вредной привычки (около 40-50%). Риск развития сердечно-сосудистых заболеваний у курящих примерно в 2-3 раза выше, чем у некурящих. Ожирение Ожирение относится к числу наиболее значимых и в то же время наиболее легко модифицируемых ФР атеросклероза и ИБС. В настоящее время получены убедительные данные о том, что ожирение является не только независимым ФР сердечно-сосудистых заболеваний, но и одним из звеньев – возможно, пусковым механизмом – других ФР, например АГ, ГЛП, инсулинорезистентности и сахарного диабета. Так, в ряде исследований была выявлена прямая зависимость между смертностью от сердечно-сосудистых заболеваний и массой тела (МТ). Ожирение существенно повышает риск возникновения сахарного диабета I и II типа. Так, у женщин, прибавивших в весе после 18 лет всего 5-7,9 кг, риск возникновения сахарного диабета вдвое больше, чем у женщин со стабильной массой тела. У женщин с прибавкой массы тела 8 кг и более риск увеличивается в 3 раза. Характерно, что у пациентов среднего возраста, похудевших по разным причинам более чем на 5 кг, риск возникновения сахарного диабета уменьшается наполовину. В последние годы много внимания уделяется изучению клинической картины и патогенеза так называемого “метаболического синдрома” (“синдрома Х”), который очень часто сочетается с ожирением. В основе этого синдрома лежит, как известно, наличие инсулинорезистентности, гипертриглицеридемии и АГ. У лиц с метаболическим синдромом существенно повышен риск возникновения ИМ, внезапной смерти и сахарного диабета. Ожирение является не только самостоятельным и независимым ФР атеросклероза и других сердечно-сосудистых заболеваний, но и, возможно, одним из пусковых механизмов других ФР, например АГ, ГЛП, инсулинорезистентности и сахарного диабета. 2. Сочетание ожирения, инсулинорезистентности, гипертриглицеридемии и АГ, иногда называемое “смертельным квартетом” (N.M.Kaplan), отличается особенно высоким риском развития атеросклероза и его осложнений и лежит в основе формирования так называемого метаболического синдрома (“синдрома Х”). Сахарный диабет Сахарный диабет I и II типа сочетается со значительным увеличением заболеваемости атеросклерозом и тяжестью течения многих его клинических проявлений. Риск развития сердечно-сосудистых заболеваний увеличивается в 2-4 раза у мужчин и в 3-7 раз у женщин. При сахарном диабете I типа дефицит инсулина приводит к снижению активности липопротеидлипаз и, соответственно, увеличению синтеза триглицеридов. Сахарный диабет II типа часто сочетается с гиперлипидемией IV типа и увеличением синтеза ЛОНП и ЛНП. В основе развития и атеросклероза, и части случаев сахарного диабета лежат одни и те же механизмы, а само наличие сахарного диабета является, таким образом, маркером наиболее тяжелого течения атеросклероза. Возраст Как правило, имеется зависимость между заболеваемостью атеросклерозом и возрастом. Чем больше возраст, тем сильнее выражен атеросклероз и чаще встречаются тяжелые клинические проявления атеросклероза (ИБС, инфаркт миокарда, ишемический инсульт и др.). В то же время в последние годы в экономически развитых странах отмечается значительный рост заболеваемости среди сравнительно молодых лиц (моложе 50 лет). Пол До 55 лет заболеваемость ИБС, церебральным и периферическим атеросклерозом среди мужчин в 3-4 раза выше, чем среди женщин. В более старшей возрастной группе (старше 65-70 лет) заболеваемость выравнивается. Это связывают с содержанием у женщин эстрогенов, которые вызывают, вероятно, вазопротективный эффект, оказывая влияние, в частности, на липидный обмен. Так, до наступления менопаузы у женщин наблюдается более высокое содержание ХС ЛВП и более низкая концентрация ХС ЛНП. При этом риск развития ИБС, инфаркта миокарда и мозгового инсульта примерно в 8-10 раз меньше, чем у мужчин того же возраста. В менопаузе защитное действие эстрогенов уменьшается и риск возникновения осложнений атеросклероза увеличивается. В целом мужчины заболевают атеросклерозом на 10 лет раньше, чем женщины. Наследственность Риск развития атеросклероза существенно повышается у лиц, близкие родственники которых страдали ИБС, церебральным и периферическим атеросклерозом. Причем такая наследственная предрасположенность проявляется преимущественно у пациентов сравнительно молодого и среднего возраста (до 55 лет). В более старших возрастных группах генетические факторы оказываются, по-видимому, менее значимыми, уступая место многочисленным приобретенным ФР (АГ, сахарный диабет, курение, ожирение и т.д.). Гиподинамия У лиц с низкой физической активностью, как правило, наблюдаются неадекватные реакции сердечно-сосудистой, дыхательной, нервной и других систем на любые внешние воздействия, в том числе психоэмоциональный стресс: возникает чрезмерная активация САС, РАС, усиливается выброс в кровяное русло катехоламинов и других биологически активных веществ, так или иначе оказывающих повреждающее действие на сосудистую систему, миокард и проводящую систему сердца. Нерациональное питание Характер питания порой способствует развитию ожирения, нарушениям углеводного и липидного обменов, которые лежат в основе формирования атеросклероза. Так, при хроническом употреблении в пищу продуктов с высоким содержанием насыщенных жирных кислот и ХС (преимущественно животный жир) в гепатоцитах накапливается избыточное количество ХС и по принципу отрицательной обратной связи в клетке снижается синтез специфических ЛНП-рецепторов и, соответственно, уменьшается захват и поглощение гепатоцитами атерогенных ЛНП, циркулирующих в крови. Воспаление и инфекции В последние годы в литературе широко обсуждается вопрос о роли воспаления в формировании неосложненной и осложненной атеросклеротической бляшки (Ross и Harker). К настоящему времени получено много доказательств наличия такого воспаления в очаге атеросклеротического поражения: присутствие в нем большого количества макрофагов, активированных Т-лимфоцитов, тучных клеток, тромбоцитов и т.д. |
|
|
Патогенез атеросклероза чрезвычайно сложен и многие его звенья до сих пор остаются малоизученными или имеют различную интерпретацию. Это объясняет отсутствие в настоящее время единой общепринятой теории патогенеза этого заболевания, которая объединяла бы все известные механизмы его развития. Следует упомянуть о классической липидно-инфильтрационной теории Н.Н.Аничкова (1913) и инфильтративно-комбинационной теории Н.Н.Аничкова и С.С.Халатова (1946). Согласно представлениям этих авторов, в основе возникновения атеросклероза лежит инфильтрация в стенку артерий экзогенного и эндогенного холестерина, что ведет к своеобразной клеточной реакции сосудистой стенки и формированию атеросклеротической бляшки. По современным представлениям, в основе развития атеросклероза лежит последовательное взаимодействие многих патогенетических факторов, ведущее в конечном счете к образованию фиброзной бляшки (неосложненной и осложненной).
Различают три основные стадии формирования атеросклеротической бляшки (атерогенез):
Образование липидных пятен и полосок Начальная стадия атеросклероза характеризуется появлением в интиме артерий пятен и полосок, содержащих липиды (см. рис. Начальные стадии образования атеросклеротической бляшки). Липидные пятна и полоски образуются в результате отложения липидов в интиме артерий. Первым звеном этого процесса является повреждение эндотелия и возникновение эндотелиальной дисфункции, сопровождающейся повышением проницаемости этого барьера.
Причинами первоначального повреждения эндотелия могут служить несколько факторов:
В результате повреждения эндотелия формируется эндотелиальная дисфункция, проявляющаяся снижением продукции вазодилатирующих факторов (простациклин, окись азота и др.) и увеличением образования вазоконстрикторных веществ (эндотелинов, АII, тромбоксана А2 и др.), еще больше повреждающих эндотелий и повышающих его проницаемость. Модифицированные ЛНП, ЛП (α) и некоторые клеточные элементы крови (моноциты, лимфоциты) проникают в интиму артерий и подвергаются окислению или гликозилированию (модификации), что способствует еще большему повреждению эндотелия и облегчает миграцию из кровотока в интиму артерий этих клеточных элементов (рис.Начальная стадия атерогенеза).
Моноциты, проникшие в интиму, трансформируются в макрофаги, которые с помощью так называемых скэвенджер-рецепторов (“рецепторов-мусорщиков”) поглощают модифицированные ЛНП (в меньшей степени – остатки ХМ и ЛОНП) и накапливают свободный и эстерифицированный ХС. Перегруженные липидами макрофаги превращаются в пенистые клетки. Макрофаги, перегруженные модифицированными ЛНП, а также тромбоциты, проникающие в интиму артерий из крови, секретируют факторы роста и митогены, воздействующие на гладкомышечные клетки, расположенные в средней оболочке артерий (медии). Под действием факторов роста и митогенов гладкомышечные клетки мигрируют в интиму и начинают пролиферировать. Находясь в интиме, они захватывают и накапливают модифицированные ЛНП, также превращаясь в своеобразные пенистые клетки. Кроме того, гладкомышечные клетки приобретают способность сами продуцировать элементы соединительной ткани (коллаген, эластин и гликозаминогликаны), которые в дальнейшем используются для построения фиброзного каркаса атеросклеротической бляшки. Со временем пенистые клетки подвергаются апоптозу – запрограммированной гибели клеток и разрушению клеточной оболочки. В результате липиды попадают во внеклеточное пространство.
Образование фиброзной бляшки По мере прогрессирования патологического процесса в участках отложения липидов разрастается молодая соединительная ткань, что ведет к образованию фиброзных бляшек, в центре которых формируется так называемое липидное ядро (рис.Стадии образования бляшки). В других случаях фиброзная покрышка хорошо выражена, плотная и меньше подвержена повреждению и разрывам. Такие бляшки называют “белыми” (рис.11, в). Они нередко значительно выступают в просвет артерии и вызывают гемодинамически значимое ее сужение, которое в некоторых случаях может осложняться возникновением пристеночного тромба. Особо опасным в формировании “осложненной” атеросклеротической бляшки является образование пристеночного тромба, который внезапно и резко ограничивает кровоток в артерии. В большинстве случаев именно в этот период возникают клинические проявления обострения заболевания, соответствующие локализации атеросклеротической бляшки (нестабильная стенокардия, инфаркт миокарда, ишемический инсульт и т.п.). К числу наиболее значимых осложнений атеросклеротического процесса относятся:
Клиническая картина атеросклеротического поражения артерий зависит от преимущественной локализации процесса, а также степени и характера возникающих при этом гемодинамических нарушений. Наиболее часто развивается атеросклероз грудного отдела аорты и ее ветвей, в итоге формируется ИБС. |
|