- •Металлографический анализ материалов
- •1. Цель работы
- •2. Общие положения и методики проведения анализа
- •2.1. Основные задачи макроанализа, методика его проведения
- •2.2. Основные задачи микроанализа и методика его проведения
- •2.2.1. Приготовление объектов для микроанализа
- •2.2.2. Оптическая микроскопия
- •2.2.3. Определение величины зерна
- •2.2.4. Изучение субструктуры монокристаллов методом избирательного (селективного) травления
- •5.2. Металлографический микроскоп ммр-4
- •Порядок работы на ммр-4 при визуальном наблюдении
- •5. Оформление результатов
- •1. Цель работы;
- •6. Контрольные вопросы по лабораторной работе
- •Дифракционные методы исследования
- •1. Цель работы
- •2. Краткая теория
- •2.1. Установление вещества по данным о межплоскостных расстояниях
- •2.3. Выбор камеры для съемки
- •2.4. Схемы съемки
- •2.5. Ошибки съемки и измерений
- •2.6. Определение размеров элементарной ячейки
- •2.7. Индицирование
- •2.8. Определение периода решетки
- •3. Методика расчета дебаеграммы
- •3.1. Определение межплоскостных расстояний и идентификация исследуемого вещества
- •3.2. Определение типа кристаллической решетки и индексов интерференции
- •3.3. Определение периода кристаллической решетки
- •1. Цель работы;
- •Пластическая деформация и рекристаллизация металлов
- •1. Цель работы
- •2. Краткая теория
- •3.3. Методы измерения твердости
- •4. Приборы, материалы, справочные пособия
- •5. Содержание и методика выполнения работы
- •6. Оформление результатов
- •Приложение
- •7. Контрольные вопросы
- •8. Литература
- •Построение диаграмм состояния методом термического анализа
- •1. Цель работы
- •2. Теория
- •3. Методика эксперимента
- •8.Литература
- •Изучение равновесной диаграммы состояния сплавов системы железо-углерод
- •1. Цель работы
- •2. Краткая теория
- •3. Методика проведения анализа
- •1. Цель работы.
- •8. Литература
- •Диффузия в металлах
- •1. Цель работы
- •2. Теория
- •3. Оборудование, приборы, материалы
- •4. Содержание работы
- •5. Оформление результатов
- •6. Контрольные вопросы
- •7. Литература
- •Влияние термической обработки на механические свойства конструкционных сталей
- •1. Цель работы
- •2. Краткая теория
- •3. Приборы, материалы, справочные пособия
- •4. Содержание работы
- •4.1. Определение критических точек углеродистых и легированных сталей методом пробных закалок:
- •7. Литература
- •Дисперсионное твердение
- •1. Цель работы
- •2. Краткая теория
- •3. Оборудование, приборы, материалы
- •4. Содержание работы
- •5. Оформление результатов
- •6. Контрольные вопросы
- •7. Литература
- •Газовая коррозия
- •1. Цель работы
- •2. Краткая теория
- •4. Оборудование, приборы, материалы
- •5. Содержание работы
- •5.1. Экспериментально определить закон роста окисной пленки для данного материала при данной температуре.
- •6. Оформление результатов
- •7. Контрольные вопросы
- •7. Литература
- •Содержание
- •7. Литература
Пластическая деформация и рекристаллизация металлов
1. Цель работы
Изучение закономерностей влияния пластической деформации и рекристаллизации на структуру и твердость металлов.
2. Краткая теория
Пластической деформацией называется деформация, остающаяся после снятия нагрузки, вызывающей эту деформацию. По современным представлениям деформация является следствием перемещения линейных дефектов кристаллической структуры – дислокаций в плоскостях скольжения – плоскостях с простейшей упаковкой (более подробно см.. [1]).
В результате протекания сдвиговых процессов зерна поликристалла постепенно вытягиваются в направлении течения металла и образуют характерную волокнистую структуру. Типичный пример изменения металлографической картины при деформировании представлен на рис.4.1.
а б
Рис.4.1 . Изменение формы зерна в результате скольжения :
а- схема и микроструктура металла до деформации;
б- схема и микроструктура металла после деформации
Деформирование металла сопровождается повышением его прочностных характеристик (предела прочности, предела текучести и твердости) при понижении пластичности (способности к дальнейшему деформированию) (рис.4.2).
Рис.4.2. Схема изменения свойств металла в зависимости от степени пластической деформации
Такое изменение механических свойств называется наклепом (или нагартовкой) и вызывается увеличением плотности дислокаций, затруднением их свободного перемещения вследствие взаимодействия между собой и с такими барьерами как границы зерен или блоки мозаики. В частности, экспериментально установлено, что плотность дислокаций в поликристаллических отожженных материалах составляет 106108 см-2, а в сильно деформированных – 10111012 см-2. При этом около 15% всей энергии деформации поглощается металлом и накапливается в виде повышенной потенциальной энергии смещенных атомов и локальных внутренних напряжений.
Несмотря на то, что состояние наклепа не является термодинамически равновесным, оно может при обычных температурах сохраняться довольно долго, т.к. подвижность атомов мала. Однако, если нагартованный материал нагреть (отжечь), то он переходит в термодинамически более устойчивое состояние. При этом происходит два основных процесса: возврат и рекристаллизация.
Возврат имеет место при невысоких температурах отжига и сопровождается снижением прочностных характеристик на 20-30% по сравнению с постдеформированным состоянием. Этим изменениям прочностных характеристик сопутствуют небольшие структурные изменения, главным образом, связанные с частичным снятием внутренних напряжений, с некоторым снижением плотности дислокаций (стадия отдыха) и их перегруппировкой. В частности, первоначально беспорядочно ориентированные дислокации могут выстраиваться в стенки, перпендикулярные плоскостям скольжения, образуя субзерна, незначительно разориентированные между собой (рис.4.3).
Рис.4.3. Схема процесса полигонизации:
а- хаотическое размещение дислокаций;
б- стенки из дислокаций (образование субзерен).
В результате образования этих дислокационных стенок зерно дробится на отдельные блоки, но в целом волокнистая структура зерен не меняется. Эта стадия возврата получила название полигонизация.
При нагреве до более высоких температур идет процесс рекристаллизации – процесс образования на месте деформированных зерен новых зерен с неискаженной (бездефектной) структурой кристаллической решетки (первичная рекристаллизация) и их дальнейший рост (собирательная рекристаллизация).
Движущей силой первичной рекристаллизации является энергия, аккумулированная в наклепанном металле. Деформированный металл стремится перейти в новое, более устойчивое, состояние с наименьшим запасом свободной энергии – состоянию с наименьшим термодинамически возможным количеством дефектов, т.е. уже в процессе первичной рекристаллизации плотность дислокаций существенно уменьшается.
Движущей силой собирательной рекристаллизации является поверхностная энергия зерен. При укрупнении зерен общая протяженность их границ становится меньше, что соответствует переходу металла в более, равновесное состояние.
Температура начала рекристаллизации металлов и сплавов, по А.А.Бовару, связана с температурой плавления простым соотношением
Ттеор.= Тпл.,
где Ттеор – абсолютная температура рекристаллизации, Тпл – абсолютная температура плавления, - коэффициент, зависящий от чистоты металла.
Для технически чистых металлов = 0,4, для металлов высокой частоты = 0,1 – 0,2, для сплавов = 0,5 – 0,8.
Кроме чистоты металла, минимальная температура рекристаллизации зависит также и от степени предшествующей деформации. Чем больше степень деформации, тем больше избыточной энергией обладает деформированный материал и тем менее он устойчив. Следовательно, большая степень деформации облегчает процесс рекристаллизации и снижает минимальную температуру рекристаллизации.
Описанные выше процессы структурных изменений деформированного металла при нагреве коррелируют с изменениями механических свойств и укрупнением зерна. Типичная схема таких изменений приведена на рис.4.4 и 4.5.
Знание температуры рекристаллизации имеет важное практическое значение. С одной стороны, именно этой температурой определяется верхний температурный предел применения изделий, в которых требуемый комплекс механических свойств создан нагартовкой и, с другой стороны, чтобы восстановить структуру и свойства наклепанного металла, его нужно нагреть выше температуры рекристаллизации.
Очевидно, что о начале процесса рекристаллизации можно судить по изменению механических свойств. При этом широкое применение как в заводских условиях, так и в исследовательских лабораториях получил метод измерения твердости, являющийся методически наиболее простым и не приводящим к разрушению изделия.
Рис.4.4. Схема изменения структуры и свойств наклепанного металла при отжиге.
Рис.4.5. Влияние температуры отжига и предшествующей деформации на величину зерна железа (время отжига 1 час)
