
- •1. Каскадные аср. Пример каскадных аср. Особенности расчета.
- •2. Системы scada
- •3. Представление об открытом управлении. Структура функц. Назначения scada.
- •4. Стандарт орс
- •5. Проблема реального времени в системах управления
- •6. Использование в системах управления операционной системы Windows
- •7. Стратегия диспетчеризации на базе расширения rtx (Real Time extension)
- •8. Принцип разбиения потоков (threads) в системе управления и схема их диспетчеризации
- •9. Проблемы управления электроавтоматикой
- •11. Каналы передачи данных. Физические интерфейсыКанал передачи данных
- •12. Локальные сети. Топология сетей. Сетевые устройства.
- •13. Основные понятия систем управления и автоматизации. Постановка задачи управления и регулирования.
- •16. Применение позиционного регулирования пид-регуляторов. Способы технической реализации систем регулирования
- •17. Программное обеспечение автоматизации
- •20. Современные шины промышленной автоматики
- •21. Стандарты использования плк
- •22. Системы связного и несвязного регулирования.
- •23. Многоконтурные аср. Комбинированные аср. Аср с дополнительным импульсом по производной.
- •24. Автоматические системы управления классификация. Основные функ. Части
- •25. Гибкие автоматизированные производства в хим. Технологии.
- •26 Динамические свойства первичных преобразователей и учет их свойств при регулировании
- •Средства измерения температуры
- •Средства измерения расхода
- •Средства измерения состава и концентрации
- •27. Задачи в области автоматизации технологических процессов химических производств отрасли. Особенности автоматизации химической промышленности.
- •28. Одноконтурные аср. Типы входных сигналов.
- •29. Основные показатели качества переходных процессов. Показатели качества автоколебательного процесса регулирования сар с регулятором релейного действия
- •Показатели качества процесса регулирования в сар с регулятором непрерывного действия максимальное динамическое отклонение регулируемой величины (динамический коэффициент регулирования)
- •Динамический коэффициент регулирования в сар тп астатических объектов (объектов без самовыравнивания).
- •Перерегулирование
- •Время регулирования
- •Остаточное отклонение регулируемой величины от заданного значения
- •Обобщенная (интегральная) оценка качества переходного процесса регулирования
- •Показатели количественные
- •Показатели надежности
- •32. Типы входных сигналов. Особенности регулирования объектов с переменными параметрами. Классификация объектов регулирования. Типы входных сигналов.
- •Располагаемая работа и способы ее сохранения. Располагаемая работа обратимых процессов.
- •2. Регулирование абсорбционных и выпарных установок.
- •3. Регулирование отстаивания. Регулирование процессов очистки сточных вод, вентиляции и водоснабжения.
- •Взаимосвязанные системы регулирования. Системы связного регулирования. Автономные аср.
- •Особенности регулирования систем поддержания температуры.
- •2.13 (А, б) –Принципиальная (а) и структурная (б) схемы термометра.
- •Особенности регулирования реакторов смешения. Трубчатые реакторы
- •Построение статических характеристик реакторов. Регулирование химических реакторов. Регулирование биологических реакторов.
- •Регулирование расхода, соотношения расходов. Регулирование давления и перепада давления. Система регулирования уровня.
- •Регулирование теплообменников
- •10. Системы регулирования рН и концентрации.
- •11. Регулирование ректификационных колонн.
- •12. Автоматизация гидромеханических процессов: смешение, перемешивание.
- •13. Автоматизация процесса выпаривания и охлаждения.
- •14 Автоматизация процессов дозирования и измельчения
- •16. Автоматизация процессов фильтрации. Мокрая очистка газов.
- •17. Выбор аппаратных средств автоматизации опасных объектов.
- •20. Основы термодинамики автоматизации и регулирования. Понятие энтропии. Понятие располагаемой работы, обратимых и необратимых процессов. Однократное и повторное использование энергии.
- •21. Рациональный выбор регулирующего органа при построении аср.
- •22. Регулирование горения при использовании различных топлив. Расчет требуемого количества топлива.
- •24. Регулирование насосов. Системы регулирования процессов в компрессорах. Предотвращение помпажа.
- •25. Регулирование расхода воздуха на сжигание. Регулирование систем загрязнения и очистки от твердых частиц.
- •26. Обеспечение без-ти упр-я.
- •29. Сушка твердых материалов
- •30. Теплопередача – необратимый процесс.
- •31. Особенности подключения частотного привода
- •32. Энергосберегающие технологии на основе чрэ переменного тока
5. Проблема реального времени в системах управления
Системы ЧПУ располагают модулями, работающими в машинном масштабе времени, и модулями, работающими в реальном времени.
Традиционно системы реального времени, включая модуль диспетчера, строят на базе операционных систем реального времени (ОСРВ), т.е. основная цель их состоит в своевременной реакции на события в объекте управления.
Исполнительные системы реального времени предлагают разные платформы для разработки и исполнения программного обеспечения. Прикладную часть реального времени разрабатывают на хост-компьютере, затем объединяют с ядром и загружают в систему управления как одну задачу. Такое решение дает высокую точность и быстродействие.
Системы управления с операционной системой UNIX реального времени переписывают ядро стандартной операционной системы с учетом требований реального времени. Такие системы поддерживают весь набор UNIX-приложений. Современные системы числового программного управления все чаще используют операционную систему Windows NT с расширением реального времени.
Система ОСРВ предсказуема в том смысле, что время, затрачиваемое на определенную работу, не должно превышать заранее установленного ограничения (Время реакции на прерывание, Время переключения контекста, Время реакции планировщика).
Сегодня появляется реальная возможность программной реализации управления электроавтоматикой станков в рамках общего программного обеспечения систем ЧПУ без привлечения дополнительной аппаратуры и системного программного обеспечения программируемых контроллеров. Подобные программные системы управления получили наименование виртуальных контроллеров SoftPLC. Указанный подход позволяет снизить стоимость системы управления при одновременном получении ряда преимуществ, в том числе упрощение общего программного обеспечения, уменьшение ошибок системного программирования, возможность отладки управляющих программ электроавтоматики в рамках самой системы ЧПУ, гибкость конфигурирования электроавтоматики, возможность использования различных коммерческих библиотек.
Основная задача контроллера состоит в одновременном выполнении нескольких команд и параллельной обработке внешних сигналов. Каждый процесс контроллера, который нуждается в выделении отдельного потока, выполняется в рамках основного процесса виртуального контроллера.
Виртуальный контроллер имеет пять составных частей (модулей):
анализатор, читающий IPD-данные из входного буфера и преобразующий эти данные во внутренний формат виртуального контроллера с учетом входных и выходных регистров электроавтоматики;
синхронизатор, поддерживающий механизм назначения квантов времени и генерирующий синхросигналы для всех процессов виртуального контроллера;
исполняемые модули, служащие для отработки команд, поступающих в виртуальный контроллер;
регистр, используемый для обмена информацией между системой ЧПУ и виртуальным контроллером;
шлюз, предназначенный для отображения информации, передаваемой по CAN-магистрали в регистр.
Недостаток РАС-контроллера в том, что время перезагрузки очень большое и как следствие, во взрывоопасных производствах их нельзя использовать.