
- •1. Каскадные аср. Пример каскадных аср. Особенности расчета.
- •2. Системы scada
- •3. Представление об открытом управлении. Структура функц. Назначения scada.
- •4. Стандарт орс
- •5. Проблема реального времени в системах управления
- •6. Использование в системах управления операционной системы Windows
- •7. Стратегия диспетчеризации на базе расширения rtx (Real Time extension)
- •8. Принцип разбиения потоков (threads) в системе управления и схема их диспетчеризации
- •9. Проблемы управления электроавтоматикой
- •11. Каналы передачи данных. Физические интерфейсыКанал передачи данных
- •12. Локальные сети. Топология сетей. Сетевые устройства.
- •13. Основные понятия систем управления и автоматизации. Постановка задачи управления и регулирования.
- •16. Применение позиционного регулирования пид-регуляторов. Способы технической реализации систем регулирования
- •17. Программное обеспечение автоматизации
- •20. Современные шины промышленной автоматики
- •21. Стандарты использования плк
- •22. Системы связного и несвязного регулирования.
- •23. Многоконтурные аср. Комбинированные аср. Аср с дополнительным импульсом по производной.
- •24. Автоматические системы управления классификация. Основные функ. Части
- •25. Гибкие автоматизированные производства в хим. Технологии.
- •26 Динамические свойства первичных преобразователей и учет их свойств при регулировании
- •Средства измерения температуры
- •Средства измерения расхода
- •Средства измерения состава и концентрации
- •27. Задачи в области автоматизации технологических процессов химических производств отрасли. Особенности автоматизации химической промышленности.
- •28. Одноконтурные аср. Типы входных сигналов.
- •29. Основные показатели качества переходных процессов. Показатели качества автоколебательного процесса регулирования сар с регулятором релейного действия
- •Показатели качества процесса регулирования в сар с регулятором непрерывного действия максимальное динамическое отклонение регулируемой величины (динамический коэффициент регулирования)
- •Динамический коэффициент регулирования в сар тп астатических объектов (объектов без самовыравнивания).
- •Перерегулирование
- •Время регулирования
- •Остаточное отклонение регулируемой величины от заданного значения
- •Обобщенная (интегральная) оценка качества переходного процесса регулирования
- •Показатели количественные
- •Показатели надежности
- •32. Типы входных сигналов. Особенности регулирования объектов с переменными параметрами. Классификация объектов регулирования. Типы входных сигналов.
- •Располагаемая работа и способы ее сохранения. Располагаемая работа обратимых процессов.
- •2. Регулирование абсорбционных и выпарных установок.
- •3. Регулирование отстаивания. Регулирование процессов очистки сточных вод, вентиляции и водоснабжения.
- •Взаимосвязанные системы регулирования. Системы связного регулирования. Автономные аср.
- •Особенности регулирования систем поддержания температуры.
- •2.13 (А, б) –Принципиальная (а) и структурная (б) схемы термометра.
- •Особенности регулирования реакторов смешения. Трубчатые реакторы
- •Построение статических характеристик реакторов. Регулирование химических реакторов. Регулирование биологических реакторов.
- •Регулирование расхода, соотношения расходов. Регулирование давления и перепада давления. Система регулирования уровня.
- •Регулирование теплообменников
- •10. Системы регулирования рН и концентрации.
- •11. Регулирование ректификационных колонн.
- •12. Автоматизация гидромеханических процессов: смешение, перемешивание.
- •13. Автоматизация процесса выпаривания и охлаждения.
- •14 Автоматизация процессов дозирования и измельчения
- •16. Автоматизация процессов фильтрации. Мокрая очистка газов.
- •17. Выбор аппаратных средств автоматизации опасных объектов.
- •20. Основы термодинамики автоматизации и регулирования. Понятие энтропии. Понятие располагаемой работы, обратимых и необратимых процессов. Однократное и повторное использование энергии.
- •21. Рациональный выбор регулирующего органа при построении аср.
- •22. Регулирование горения при использовании различных топлив. Расчет требуемого количества топлива.
- •24. Регулирование насосов. Системы регулирования процессов в компрессорах. Предотвращение помпажа.
- •25. Регулирование расхода воздуха на сжигание. Регулирование систем загрязнения и очистки от твердых частиц.
- •26. Обеспечение без-ти упр-я.
- •29. Сушка твердых материалов
- •30. Теплопередача – необратимый процесс.
- •31. Особенности подключения частотного привода
- •32. Энергосберегающие технологии на основе чрэ переменного тока
Регулирование теплообменников
Теплообменные аппараты как объекта автоматизации можно подразделить на: теплообменники смешения и кожухотрубные теплообменники.
Варианты систем автоматизации:
Применение одноконтурной замкнутой АСР, в которой регулирующим воздействием является расход 1.
1 2 3 4
Включает систему регулирования соотношения расходов 1 и 2.
Коррекция коэффициента соотношения в зависимости от значения темпратуры второго потока, так что корректирующее устройство является компенсатором возмущения по температуре.
Система регулирования соотношения расходов 1 и 2 с коррекцией коэффициента соотношения по выходной температуре смеси, т.е. двухкаскадная АСР.
Система регулирования температуры смеси с коррекцией по двум возмущениям – расход 2 и Т2, т.е. комбинированная АСР.
5 кожухотрубный
Для кожухотрубных теплообменников задача регулирования и выбор системы автоматизации диктуется назначением аппарата. В теплообменниках, предназначенных для нагрева вещества до заданной температуры за счет тепла конденсации греющего пара, задачей регулирования является стабилизация температуры технологического потока на выходе из теплообменника. В испарителях или конденсаторах, предназначенных для испарения или конденсации технологического потока. Задача регулирования сводится к поддержанию материального баланса по технологическому потоку.
10. Системы регулирования рН и концентрации.
Системы регулировании рН можно подразделить на два типа, в зависимости от требуемой точности регулирования. Если скорость изменении рН невелика, а допустимые пределы ее колебаний достаточно широки, применяют позиционные системы регулирования, поддерживающие рН в заданных пределах: рНн≤рН≤рНв. Ко второму типу относятся системы, обеспечивающие регулирование процессов, в которых требуется точное поддержание рН на заданном значении (например, в процессах нейтрализации). Для их регулирования используют непрерывные ПИ- или ПИД-регуляторы.
Общей особенностью объектов при регулировании рН является нелинейность их статических характеристик.
Д
ля
различных заданных значений рН На
этой кривой можно выделить три характерных
участка: первый (средний), относящийся
к почти нейтральным средам, близок к
линейному и характеризуется очень
большим коэффициентом усиления; второй
и третий участки, относящиеся к сильно
щелочным или кислым средам, обладают
наибольшей кривизной.
Для обеспечения устойчивого регулирования рН применяют специальные системы. На рис. 2.15, а показан пример системы регулирования рН с двумя регулирующими клапанами. Клапан 1, обладающий большим условным диаметром, служит для грубого регулирования расхода и настроен на максимальный диапазон изменения выходного сигнала регулятора [хрн, хРв] (рис. 2.15,6, кривая1). Клапан 2, служащий для точного регулирования, рассчитан на меньшую пропускную способность и настроен таким образом, что при xр=xр0 +∆ он полностью открыт, а при xр=xр0 -∆ — полностью закрыт (кривая 2).
Рис.2.15. а) функцион.схема, б) статич.хар-ки клапанов, 1,2 – клапан, 3- регулятор рН.
Таким образом, при незначительном отклонения рН от рН°, когда xр0 -∆ ≤ xр0≤ xр0 +∆, степень открытия клапана 1 практически не изменяется, и регулирование ведется клапаном 2. Если |хp—хр°|>∆, клапан 2 остается в крайнем положении, и регулирование осуществляется клапаном 1.
На втором и третьем участках статической характеристики (рис. 2 14) ее линейная аппроксимация справедлива лишь в очень узком диапазоне изменения рН, н в реальных условиях ошибка регулирования за счет линеаризации может оказаться недопустимо большой. В этом случае более точные результаты дает кусочно-линейная аппроксимация (рис. 2.16), при которой линеаризованный объект имеет переменный коэффициент усиления: к = к0 при рН < рН0 – δ, к1 = к2 при рН < рН0 + δ, к = к0 при |рН — рН0|≤ δ.
На рис. 2.17 приведена структурная схема такой АСР. В зависимости от рассогласования ∆рН, включается в работу одни кз регуляторов, настроенный на соответствующий коэффициент усиления объекта.
Регулирование параметров состава и качества.
В процессах химической технологии большую роль играет точное поддержание качественных параметров продуктов (состава газовой смеси, концентрации того или иного вещества в потоке и т. п.). Эти параметры характеризуются сложностью измерения. В ряде случаев для измерения состава используют хроматографический метод. При этом результат измерения бывает известен в дискретные моменты времени, отстоящие друг от друга на продолжительность цикла работы хроматографа. Аналогичная ситуация возникает и тогда, когда единственным способом измерения качества продукции является в той или иной степени механизированный анализ проб.