
- •1. Каскадные аср. Пример каскадных аср. Особенности расчета.
- •2. Системы scada
- •3. Представление об открытом управлении. Структура функц. Назначения scada.
- •4. Стандарт орс
- •5. Проблема реального времени в системах управления
- •6. Использование в системах управления операционной системы Windows
- •7. Стратегия диспетчеризации на базе расширения rtx (Real Time extension)
- •8. Принцип разбиения потоков (threads) в системе управления и схема их диспетчеризации
- •9. Проблемы управления электроавтоматикой
- •11. Каналы передачи данных. Физические интерфейсыКанал передачи данных
- •12. Локальные сети. Топология сетей. Сетевые устройства.
- •13. Основные понятия систем управления и автоматизации. Постановка задачи управления и регулирования.
- •16. Применение позиционного регулирования пид-регуляторов. Способы технической реализации систем регулирования
- •17. Программное обеспечение автоматизации
- •20. Современные шины промышленной автоматики
- •21. Стандарты использования плк
- •22. Системы связного и несвязного регулирования.
- •23. Многоконтурные аср. Комбинированные аср. Аср с дополнительным импульсом по производной.
- •24. Автоматические системы управления классификация. Основные функ. Части
- •25. Гибкие автоматизированные производства в хим. Технологии.
- •26 Динамические свойства первичных преобразователей и учет их свойств при регулировании
- •Средства измерения температуры
- •Средства измерения расхода
- •Средства измерения состава и концентрации
- •27. Задачи в области автоматизации технологических процессов химических производств отрасли. Особенности автоматизации химической промышленности.
- •28. Одноконтурные аср. Типы входных сигналов.
- •29. Основные показатели качества переходных процессов. Показатели качества автоколебательного процесса регулирования сар с регулятором релейного действия
- •Показатели качества процесса регулирования в сар с регулятором непрерывного действия максимальное динамическое отклонение регулируемой величины (динамический коэффициент регулирования)
- •Динамический коэффициент регулирования в сар тп астатических объектов (объектов без самовыравнивания).
- •Перерегулирование
- •Время регулирования
- •Остаточное отклонение регулируемой величины от заданного значения
- •Обобщенная (интегральная) оценка качества переходного процесса регулирования
- •Показатели количественные
- •Показатели надежности
- •32. Типы входных сигналов. Особенности регулирования объектов с переменными параметрами. Классификация объектов регулирования. Типы входных сигналов.
- •Располагаемая работа и способы ее сохранения. Располагаемая работа обратимых процессов.
- •2. Регулирование абсорбционных и выпарных установок.
- •3. Регулирование отстаивания. Регулирование процессов очистки сточных вод, вентиляции и водоснабжения.
- •Взаимосвязанные системы регулирования. Системы связного регулирования. Автономные аср.
- •Особенности регулирования систем поддержания температуры.
- •2.13 (А, б) –Принципиальная (а) и структурная (б) схемы термометра.
- •Особенности регулирования реакторов смешения. Трубчатые реакторы
- •Построение статических характеристик реакторов. Регулирование химических реакторов. Регулирование биологических реакторов.
- •Регулирование расхода, соотношения расходов. Регулирование давления и перепада давления. Система регулирования уровня.
- •Регулирование теплообменников
- •10. Системы регулирования рН и концентрации.
- •11. Регулирование ректификационных колонн.
- •12. Автоматизация гидромеханических процессов: смешение, перемешивание.
- •13. Автоматизация процесса выпаривания и охлаждения.
- •14 Автоматизация процессов дозирования и измельчения
- •16. Автоматизация процессов фильтрации. Мокрая очистка газов.
- •17. Выбор аппаратных средств автоматизации опасных объектов.
- •20. Основы термодинамики автоматизации и регулирования. Понятие энтропии. Понятие располагаемой работы, обратимых и необратимых процессов. Однократное и повторное использование энергии.
- •21. Рациональный выбор регулирующего органа при построении аср.
- •22. Регулирование горения при использовании различных топлив. Расчет требуемого количества топлива.
- •24. Регулирование насосов. Системы регулирования процессов в компрессорах. Предотвращение помпажа.
- •25. Регулирование расхода воздуха на сжигание. Регулирование систем загрязнения и очистки от твердых частиц.
- •26. Обеспечение без-ти упр-я.
- •29. Сушка твердых материалов
- •30. Теплопередача – необратимый процесс.
- •31. Особенности подключения частотного привода
- •32. Энергосберегающие технологии на основе чрэ переменного тока
1. Каскадные аср. Пример каскадных аср. Особенности расчета.
Каскадные системы применяют для автоматизации объектов, обладающих большой инерционностью по каналу регулирования.
В этом случае в систему регулирования (рис. 1) включают два регулятора – основной (внешний) регулятор, служащий для стабилизации основного выхода объекта у, и вспомогательный (внутренний) регулятор, предназначенный для регулирования вспомогательной координаты у1. Заданием для вспомогательного регулятора служит выходной сигнал основного регулятора.
Выбор законов регулирования определяется назначением регуляторов: для поддержания основной выходной координаты на заданном значении без статической ошибки закон регулирования основного регулятора должен включать интегральную составляющую; от вспомогательного регулятора требуется быстродействие, поэтому он может иметь любой закон регулирования (в частности пропорциональный как наиболее простой и достаточно быстродействующий).
Эквивалентный объект для основного
регулятор 1 представляет собой
последовательное соединение замкнутого
вспомогательного контура и основного
канала регулирования; передаточная
функция его равна
Рис. 1. Структурная схема каскадной АСР
Эквивалентный объект для вспомогательного
регулятора 2 является параллельным
соединением вспомогательного канала
и основной разомкнутой системы. Его
передаточная функция имеет вид:
Различают два метода расчета каскадных АСР.
1-й метод. Расчет начинают с основного регулятора. Метод используют в тех случаях, когда инерционность вспомогательного канала намного меньше, чем основного.
2-й метод. Расчет начинают со
вспомогательного регулятора. На первом
шаге предполагают, что внешний регулятор
отключен, т. е.
и
В первом приближении настройки
вспомогательного регулятора
находят по одноконтурной АСР для
вспомогательного канала регулирования.
На втором шаге рассчитывают настройки
основного регулятора по передаточной
функции эквивалентного объекта
с учетом
.
Для уточнения настроек вспомогательного
регулятора
расчет
проводят по передаточной функции
,
в которую подставляют
.
Расчеты проводят до тех пор, пока
настройки вспомогательного регулятора,
найденные в двух последовательных
итерациях, не совпадут с заданной
точностью.
2. Системы scada
Системы SCADA (сбор данных и диспетчерское управление) являются неизменными компонентами автоматизированной интегрированной системы. Они выполняют функции серверов технологических данных, поддерживающих обмен информацией между технологическими устройствами и сетью персональных компьютеров предприятия.. Функции систем SCADA формулируют следующим образом.
1. Сбор, первичная обработка и накопление информации о параметрах технологического процесса и состоянии оборудования.
Отображение информации о текущих параметрах технологического процесса на экране монитора в виде графических мнемосхем.
Отображение графиков текущих значений технологических параметров в реальном времени за заданный интервал.
Обнаружение критических (аварийных) ситуаций. Вывод на экран монитора технологических и аварийных сообщений.
Архивирование истории изменения параметров технологического процесса.
Оперативное управление технологическим процессом.
Предоставление данных о параметрах технологического процесса для их использования в системе управления предприятием.
Системы SCADA реализованы обычно в виде сетевых персональных компьютеров, причем необязательно все функции SCADA сосредоточены в одном компьютере. Так, в интегрированной системе могут быть выделены системы SCADA типов Data Access (доступ к данным технологического процесса), Alarms and Events (выявление критических и аварийных ситуаций), History Access (архивирование истории изменения параметров технологического процесса) (рис. 15).
Многие фирмы, производители систем SCADA, стараются сосредоточить в этих системах целый комплекс продуктов, удовлетворяющих всем потребностям автоматизации современного промышленного предприятия.