
- •1) Каскадные аср. Пример каскадных аср. Особенности расчета.
- •2) Системы scada
- •3) Представление об открытом управлении. Структура функц. Назначения scada.
- •4) Стандарт орс
- •5) Проблема реального времени в системах управления
- •6) Использование в системах управления операционной системы Windows
- •7) Стратегия диспетчеризации на базе расширения rtx (Real Time extension)
- •8) Принцип разбиения потоков (threads) в системе управления и схема их диспетчеризации
- •9) Проблемы управления электроавтоматикой
- •11) Каналы передачи данных. Физические интерфейсы
- •12. Локальные сети. Топология сетей. Сетевые устройства.
- •13. Основные понятия систем управления и автоматизации. Постановка задачи управления и регулирования.
- •17.Выбор аппаратн. Ср-в авт-и опасн.Пром.О. Fieldbus
- •20. Современные шины промышленной автоматики
- •21. Стандарты использования плк
- •22. Системы связного и несвязного регулирования.
- •23. Многоконтурные аср. Комбинированные аср. Аср с дополнительным импульсом по производной.
- •26 Динамические свойства первичных преобразователей и учет их свойств при регулировании
- •Средства измерения температуры
- •Средства измерения расхода
- •27. Задачи в области автоматизации тех. Процессов хим. Производств отрасли. Особенности автоматизации хим. Пром-ти.
- •Показатели количественные
- •2. Располагаемая работа и способы ее сохранения. Располагаемая работа обратимых процессов.
- •2.2. Регулирование абсорбционных и выпарных установок.
- •3.2. Регулирование отстаивания. Регулирование процессов очистки сточных вод, вентиляции и водоснабжения.
- •Взаимосвязанные системы регулирования. Системы связного регулирования. Автономные аср.
- •. Особенности регулирования систем поддержания температуры.
- •10. 2. Системы регулирования рН и концентрации.
- •11. Регулирование ректификационных колонн.
- •12.2. Автоматизация гидромеханических процессов: смешение, перемешивание.
- •13.2. Автоматизация процесса выпаривания и охлаждения.
- •14.2. Автоматизация процессов дозирования и измельчения
- •17.2. Выбор аппаратн. Ср-в авт-и опасн.Пром.О. Fieldbus
- •20.2. Основы термодинамики автоматизации и регулирования. Понятие энтропии. Понятие располагаемой работы, обратимых и необратимых процессов. Однократное и повторное использование энергии.
- •21.2. Рациональный выбор регулирующего органа при построении аср.
- •22.2. Регулирование горения при использовании различных топлив. Расчет требуемого количества топлива.
- •24.2. Регулирование насосов. Системы регулирования процессов в компрессорах. Предотвращение помпажа.
- •25.2. Регулирование расхода воздуха на сжигание. Регулирование систем загрязнения и очистки от твердых частиц.
- •26.2. Обеспечение без-ти упр-я.
- •29.2. Сушка твердых материалов
- •30.2. Теплопередача – необратимый процесс.
- •31.2. Особенности подключения частотного привода
Взаимосвязанные системы регулирования. Системы связного регулирования. Автономные аср.
Объекты с несколькими входами и выходами, взаимно связанными между собой, называют многосвязными объектами.
Существует два различных подхода к автоматизации многосвязных объектов: несвязанное регулирование отдельных координат с помощью одноконтурных АСР; связанное регулирование с применением многоконтурных систем, в которых внутренние перекрестные связи объекта компенсируются внешними динамическими связями между отдельными контурами регулирования.
Связанные системы регулирования включают кроме основных регуляторов дополнительные динамические компенсаторы. Расчет и наладка таких систем гораздо сложнее, чем одноконтурных АСР.
Системы связанного регулирования. Автономные АСР. Основой построения систем связанного регулирования является принцип автономности. Означает взаимную независимость выходных координат при работе двух замкнутых систем регулирования.
Условие автономности складывается из 2 условий инвариантности: инвариантности первого выхода по отношению к сигналу второго регулятора и инвариантности второго выхода по отношению к сигналу первого регулятора Хр1:
При этом сигнал Xpi можно рассматривать как возмущение для У 2, а сигнал Xps — как возмущение для у1. Тогда перекрестные каналы играют роль каналов возмущения. Для компенсации этих возмущений в систему регулирования вводят динамические устройства с передаточными функциями Ru(p) и К'д(р), сигналы от которых поступают на соответствующие каналы регулирования или на входы регуляторов.
По аналогии с инвариантными АСР передаточные функции компенсаторов Ri2(p) и Rsi(p), определяемые из условия автономности, будут зависеть от передаточных функций прямых и перекрестных каналов объекта и в соответствии с выражениями и будут равны:
Для построения автономных систем регулирования важную роль играет физическая реализуемость и техническая реализация приближенной автономности.
Условие приближенной автономности записывается для реальных компенсаторов с учетом рабочих частот соответствующих регуляторов:
В химической технологии одним из самых сложных многосвязных объектов является процесс ректификации. Даже в простейших случаях — при разделении бинарных смесей в ректификационной колонне можно выделить несколько взаимосвязанных координат
. Особенности регулирования систем поддержания температуры.
Температура является показателем термодинамического состояния системы и используется вых. координата при регулировании тепловых процессов.
Динамические характеристики объектов в системах регулирования температуры зависят от физико-хим. параметров процесса и конструкции аппарата. Поэтому общие рекомендации по выбору АСР температуры сформулировать невозможно, и требуется анализ каждого конкретного процесса.
К общим особенностям АСР температуры относятся: значительную инерционность тепловых процессов и промышленных датчиков температуры. Поэтому одна из основных задач при проектировании АСР температуры – уменьшение инерционности датчиков.
Основными направлениями уменьшения инерционности датчиков температуры являются:
Повышение коэффициентов теплоотдачи от среды к чехлу в результате правильного выбора места установки датчика; при этом скорость движения среды должна быть максимальной; при прочих равных условиях более предпочтительнее установка термометров в жидкой фазе (по сравнению с газообразной), в конденсирующем паре (по сравнению с конденсатом).
Уменьшение теплового сопротивления и тепловой емкости защитного чехла в результате выбора его материала и толщины.
Уменьшение постоянной времени воздушной прослойки за счет применения наполнителей (жидкости, металлической стружки); у термоэлектрических преобразователей (термопар) рабочий спай припаивается к защитному чехлу;
Выбор типа первичного преобразователя, например, при выборе термометра сопротивления, термопары или манометрического термометра необходимо учитывать, что наименьшей инерционностью обладает термопара в малоинерционном исполнении, наибольшей - манометрический термометр.