
- •Московский энергетический институт (технический университет)
- •Задание на магистерскую диссертацию
- •Обоснование выбора темы диссертационной работы
- •2. Консультации по разделу
- •3. Консультации по разделу
- •4. План работы над магистерской диссертацией
- •5. Рекомендуемая литература
- •Краткие сведения о студенте:
- •Аннотация
- •Содержание
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •1.1. Электроснабжение ответственных потребителей.
- •1.2. Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа.
- •1.3. Основные положения защиты от поражения электрическим током.
- •1.4. Выбор системы заземления нейтрали при питании ответственных потребителей.
- •1.4.1. Система заземления tn.
- •1.4.2. Система заземления it.
- •1.4.3. Система заземления tt.
- •1.5. Электрофизические реакции при протекании электрического тока через тело человека
- •1.6. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •Глава 2. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления tn.
- •2.1. Методика расчёта токов короткого замыкания и проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор
- •2.1.1. Расчет токов однофазного короткого замыкания в сетях tn.
- •2.1.2. Методика проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор.
- •Продолжение таблицы 2.2
- •2.2. Методика расчёта токов короткого замыкания и проверки защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •2.2.1 Расчет тока однофазного кз в сетях tn в инверторном режиме работы.
- •2.2.2 Расчет тока однофазного кз в сетях tn в режиме работы от сети.
- •2.2.3. Сравнение инверторного режима работы и режима работы от сети при расчета тока однофазного кз.
- •2.2.4. Методика проверки эффективности защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •Глава 3. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления it.
- •3.1. Методика расчёта токов короткого замыкания в сетях it при питании через понижающий трансформатор.
- •3.1.1. Первое замыкание.
- •3.1.1.1. Сеть it с изолированной и нераспределенной нейтралью.
- •3.1.1.2. Сеть it с заземленной через сопротивление и нераспределенной нейтралью.
- •3.1.1.3. Сеть it с изолированной и распределенной нейтралью.
- •3.1.2. Второе замыкание при не устраненном первом.
- •3.1.2.1. Сеть it с нераспределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.2. Сеть it с распределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.3. Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей.
- •3.1.2.4. Сеть it с распределенной нейтралью и отдельными заземлителями потребителей.
- •3.2. Методика проверки эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор.
- •3.3. Методики расчёта токов короткого замыкания при питании от ибп статического типа в сетях it.
- •3.3.1. Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью.
- •3.3.2. Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью.
- •3.4. Методика проверки эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа.
- •3.5. Дополнительные мероприятия по обеспечению защиты при косвенном прикосновении при электроснабжении от источников бесперебойного питания.
- •3.6. Рекомендации по проектированию систем электроснабжения с источниками бесперебойного питания статического типа.
- •Заключение
- •Список используемых источников
1.4. Выбор системы заземления нейтрали при питании ответственных потребителей.
Электрические сети напряжением до 1000 В с разными системами заземления значительно отличаются друг от друга по степени бесперебойности электроснабжения потребителей, условиям и способам обеспечения электробезопасности, требованиям к заземляющим устройствам, простоте и удобству проектирования и эксплуатации [13]. В [14,15] приводится сравнительный анализ сетей TN, IT и TT.
Тип системы заземления обозначают двумя буквами. Первая буква указывает на характер заземления источника электропитания:
Т — непосредственная связь нейтрали источника электропитания с землей;
I — нейтраль источника электропитания изолирована или соединена с землей через большое сопротивление.
Вторая буква определяет состояние заземления:
Т — раздельное (местное) заземление источника электропитания и электрооборудования;
N — источник электропитания заземлен, а заземление потребителей производится только через PEN-проводник.
1.4.1. Система заземления tn.
В системе TN питающие сети имеют непосредственно присоединенную к земле точку. Открытые проводящие части электроустановки присоединяются к этой точке посредством нулевых защитных проводников.
В зависимости от устройства нулевого рабочего и нулевого защитного проводников различают следующие три типа системы TN:
Система TN-C (рисунок 1.5) — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении;
Система TN-S (рисунок 1.6) — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении;
Система TN-C-S (рисунок 1.7) — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания.
Рисунок 1.5 – Система TN-С
1 — заземление источника питания; 2 — открытые проводящие части
Рисунок 1.6 – Система ТN-S
1 — заземление источника питания; 2 — открытые проводящие части
Рисунок 1.7 – Система TN-С-S
1 — заземление источника питания; 2 — открытые проводящие части
Однофазные замыкания сетях с системой заземления TN должны автоматически отключаться с помощью защиты от сверхтоков, для чего ток однофазного КЗ должен быть достаточно большим, а сопротивление петли фаза-нуль — весьма малым. Надежность срабатывания защиты от сверхтоков обеспечивается при проектировании путем расчета, а в период эксплуатации — путем измерения сопротивления петли фаза-нуль. Прямое прикосновение в сетях с системой TN всегда опасно, так как напряжение прикосновения равно фазному напряжению сети, но и косвенное также может быть опасно.
Преимущества сетей с системой TN:
возможен отказ от УЗО;
экономия средств при схеме TN-C благодаря устранению одного полюса выключателей и одного проводника;
не требуется постоянный эксплуатационный надзор.
Однако для сети с системой TN характерны низкая степень бесперебойности электроснабжения вследствие отключения питания при однофазном замыкании на корпус (60 - 85 % всех повреждений в сети) и большой ток однофазного КЗ, часто являющийся причиной пожара. Кроме того, из-за необходимости проверки сопротивления петли фаза-нуль при проектировании и эксплуатации персонал должен иметь достаточно высокую квалификацию.
В настоящее время согласно [10] электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы ТN (следует отметить, что в 1.1.17 [10] словосочетание «как правило» означает, что данное требование является преобладающим, а отступление от него должно быть обосновано).
Система TN позволяет иметь только одну защиту сети (защиту от сверхтоков), которая действует при всех видах КЗ, но большой ток однофазного КЗ является ее главным недостатком. Поэтому данную систему не следует рекомендовать, например, для питания потребителей, где существует высокая пожарная опасность. Эта система нашла широкое распространение в Англии, Германии и США.