
- •Московский энергетический институт (технический университет)
- •Задание на магистерскую диссертацию
- •Обоснование выбора темы диссертационной работы
- •2. Консультации по разделу
- •3. Консультации по разделу
- •4. План работы над магистерской диссертацией
- •5. Рекомендуемая литература
- •Краткие сведения о студенте:
- •Аннотация
- •Содержание
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •1.1. Электроснабжение ответственных потребителей.
- •1.2. Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа.
- •1.3. Основные положения защиты от поражения электрическим током.
- •1.4. Выбор системы заземления нейтрали при питании ответственных потребителей.
- •1.4.1. Система заземления tn.
- •1.4.2. Система заземления it.
- •1.4.3. Система заземления tt.
- •1.5. Электрофизические реакции при протекании электрического тока через тело человека
- •1.6. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •Глава 2. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления tn.
- •2.1. Методика расчёта токов короткого замыкания и проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор
- •2.1.1. Расчет токов однофазного короткого замыкания в сетях tn.
- •2.1.2. Методика проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор.
- •Продолжение таблицы 2.2
- •2.2. Методика расчёта токов короткого замыкания и проверки защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •2.2.1 Расчет тока однофазного кз в сетях tn в инверторном режиме работы.
- •2.2.2 Расчет тока однофазного кз в сетях tn в режиме работы от сети.
- •2.2.3. Сравнение инверторного режима работы и режима работы от сети при расчета тока однофазного кз.
- •2.2.4. Методика проверки эффективности защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •Глава 3. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления it.
- •3.1. Методика расчёта токов короткого замыкания в сетях it при питании через понижающий трансформатор.
- •3.1.1. Первое замыкание.
- •3.1.1.1. Сеть it с изолированной и нераспределенной нейтралью.
- •3.1.1.2. Сеть it с заземленной через сопротивление и нераспределенной нейтралью.
- •3.1.1.3. Сеть it с изолированной и распределенной нейтралью.
- •3.1.2. Второе замыкание при не устраненном первом.
- •3.1.2.1. Сеть it с нераспределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.2. Сеть it с распределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.3. Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей.
- •3.1.2.4. Сеть it с распределенной нейтралью и отдельными заземлителями потребителей.
- •3.2. Методика проверки эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор.
- •3.3. Методики расчёта токов короткого замыкания при питании от ибп статического типа в сетях it.
- •3.3.1. Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью.
- •3.3.2. Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью.
- •3.4. Методика проверки эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа.
- •3.5. Дополнительные мероприятия по обеспечению защиты при косвенном прикосновении при электроснабжении от источников бесперебойного питания.
- •3.6. Рекомендации по проектированию систем электроснабжения с источниками бесперебойного питания статического типа.
- •Заключение
- •Список используемых источников
1.2. Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа.
В качестве независимого источника питания для ответственных потребителей последнее время широко используются источники бесперебойного питания статического типа. Электроснабжение от ИБП имеет ряд важных особенностей, отличающих его от электроснабжения через понижающий трансформатор. Эти особенности, подробно изложенные во второй главе, приводят к недопустимости применения к сетям с ИБП уже разработанных методик для проверки обеспечения защиты при косвенном прикосновении в сетях до 1кВ при питании через понижающий трансформатор [6]. В связи с этим остро стоит проблема разработки методики для проверки обеспечения защиты при косвенном прикосновении в сетях до 1кВ при электроснабжении от источника бесперебойного питания статического типа. Для раскрытия особенностей функционирования ИБП статического типа рассмотрим состав ИБП и существующие топологии.
Стандарт IEC 62040-3 [7], выделяет 3 топологии ИБП.
passive standby - ИБП резервного типа;
line interactive - ИБП линейно-интерактивного типа;
double conversion - ИБП с двойным преобразованием.
Рассмотрим основные конструктивные элементы источника бесперебойного питания (рисунок 1.3) [8]:
Выпрямитель / зарядное устройство
Преобразует переменный ток в постоянный для:
питания инвертора;
зарядки и подзарядки батареи.
Инвертор - получает питание от:
выпрямителя в нормальном режиме;
батареи в автономном режиме.
Инвертор предназначен для преобразования постоянного тока в переменный. Выдает синусоидальный выходной сигнал с заданной амплитудой и частотой.
Батарея - предназначена для обеспечения автономной работы в случае:
отсутствия питания от основной сети;
несоответствия параметров основной сети установленным параметрам ИБП.
Байпас статический - предназначен для электроснабжения нагрузки при перегрузке или неполадках в ИБП.
Байпас ручной – предназначен для электроснабжения нагрузки во время проведения регламентных работ с ИБП.
Наибольшее распространение получила топология с двойным преобразованием (рисунок 1.3) [8].
Рисунок 1.3 ИБП с двойным преобразованием (double conversion)
Для данной топологии (рисунок 1.3) стандарт определяет три режима работы [8]:
нормальный (1й приоритет);
автономный (2й приоритет);
байпас (резервную сеть питания) (3й приоритет).
Эти режимы характеризуются следующими параметрами работы:
В нормальном режиме работы питание осуществляется по цепи выпрямитель-инвертор, где происходит преобразование переменного тока в постоянный и обратно, что и дало название топологии. При несоответствии параметров питающей сети требованиями настроек ИБП или при повреждении питающей сети ИБП переходит в режим автономной работы, в котором инвертор и батарея обеспечивают непрерывность электроснабжения нагрузки. Источник бесперебойного питания продолжает функционировать в течение автономного времени работы, определяемого емкостью и зарядом батареи, или до возвращения параметров сети в соответствие требованиям настроек ИБП, после чего происходит переключение ИБП в нормальный режим работы. Топология ИБП двойного преобразования содержит статический байпас. Электроснабжение нагрузки может быть переключено на байпас без перерыва электроснабжения в следующих случаях:
повреждение ИБП;
переходной ток нагрузки;
перегрузка;
разряд батареи.
Сеть питания ИБП и байпаса должны быть синхронизированы для обеспечения перевода нагрузки без перерыва электроснабжения. Работа на байпасе должна рассматриваться только как аварийный режим работы (из-за разряженных аккумуляторов, неисправности инвертора, короткого замыкания), поскольку нагрузка более не защищена надлежащим образом, и качество электропитания зависит от параметров сети. Если система не переключена на байпас ручным способом, то этот режим имеет низший приоритет и, следовательно, должен быть по возможности исключен. Существует так же ручной байпас для осуществления регламентных работ [8].
Преимуществами топологии с двойным преобразованием являются [9]:
постоянное поддержание выходного напряжения на выходе ИБП при питании от сети и батареи;
изоляция нагрузки от вышестоящей сети, отсутствует передача помех в сеть питания нагрузки, таких как перенапряжения и импульсы;
регулировка выходного напряжения;
возможно функционирование в качестве преобразователя частоты;
широкий диапазон входного напряжения позволяющий поддерживать регулировку выходного напряжения в заданных пределах;
мгновенный переход в автономный режим работы при повреждении сети;
переключение на байпас без перерыва электроснабжения;
ручной байпас для осуществления регламентных работ.
Недостатком топологии с двойным преобразованием является повышенная стоимость, обусловленная указанными выше преимуществами.
Преимущества, которыми обладает данная топология, делают ее единственной конфигурацией, применяемой в сегментах средней и большой мощности (начиная с 10 кВА).
Топология двойного преобразования в нормальном и автономном режимах питает нагрузку через инвертор и лишь в режиме байпас - от сети. Эта особенность важна, так как наличие в сети питания инвертора влияет на величину тока КЗ за ним [8]. Подробнее это влияние описано во второй главе.