
- •Московский энергетический институт (технический университет)
- •Задание на магистерскую диссертацию
- •Обоснование выбора темы диссертационной работы
- •2. Консультации по разделу
- •3. Консультации по разделу
- •4. План работы над магистерской диссертацией
- •5. Рекомендуемая литература
- •Краткие сведения о студенте:
- •Аннотация
- •Содержание
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •1.1. Электроснабжение ответственных потребителей.
- •1.2. Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа.
- •1.3. Основные положения защиты от поражения электрическим током.
- •1.4. Выбор системы заземления нейтрали при питании ответственных потребителей.
- •1.4.1. Система заземления tn.
- •1.4.2. Система заземления it.
- •1.4.3. Система заземления tt.
- •1.5. Электрофизические реакции при протекании электрического тока через тело человека
- •1.6. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •Глава 2. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления tn.
- •2.1. Методика расчёта токов короткого замыкания и проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор
- •2.1.1. Расчет токов однофазного короткого замыкания в сетях tn.
- •2.1.2. Методика проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор.
- •Продолжение таблицы 2.2
- •2.2. Методика расчёта токов короткого замыкания и проверки защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •2.2.1 Расчет тока однофазного кз в сетях tn в инверторном режиме работы.
- •2.2.2 Расчет тока однофазного кз в сетях tn в режиме работы от сети.
- •2.2.3. Сравнение инверторного режима работы и режима работы от сети при расчета тока однофазного кз.
- •2.2.4. Методика проверки эффективности защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •Глава 3. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления it.
- •3.1. Методика расчёта токов короткого замыкания в сетях it при питании через понижающий трансформатор.
- •3.1.1. Первое замыкание.
- •3.1.1.1. Сеть it с изолированной и нераспределенной нейтралью.
- •3.1.1.2. Сеть it с заземленной через сопротивление и нераспределенной нейтралью.
- •3.1.1.3. Сеть it с изолированной и распределенной нейтралью.
- •3.1.2. Второе замыкание при не устраненном первом.
- •3.1.2.1. Сеть it с нераспределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.2. Сеть it с распределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.3. Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей.
- •3.1.2.4. Сеть it с распределенной нейтралью и отдельными заземлителями потребителей.
- •3.2. Методика проверки эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор.
- •3.3. Методики расчёта токов короткого замыкания при питании от ибп статического типа в сетях it.
- •3.3.1. Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью.
- •3.3.2. Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью.
- •3.4. Методика проверки эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа.
- •3.5. Дополнительные мероприятия по обеспечению защиты при косвенном прикосновении при электроснабжении от источников бесперебойного питания.
- •3.6. Рекомендации по проектированию систем электроснабжения с источниками бесперебойного питания статического типа.
- •Заключение
- •Список используемых источников
Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
1.1. Электроснабжение ответственных потребителей.
Практически все промышленные объекты и административные здания содержат в своей структуре электроприемники первой категории и особой группы по бесперебойности электроснабжения. Такие приемники в большинстве своем чувствительны к перерывам электроснабжения и отклонениям параметров качества электроэнергии от номинальных. К таким объектам относятся [1]:
нефтеперерабатывающие предприятия – I-ая категория: все электроприемники, относящиеся к технологическому процессу и системам пожаротушения. Особая группа: электродвигатели воздушных охладителей продуктов, электрозадвижки, автоматизированные системы управления технологическим процессом (АСУ ТП) (распределенная система управления и противоаварийная защита – РСУ/ПАЗ), релейная защита и автоматика (РЗиА), эвакуационное освещение;
химические комбинаты;
металлургические предприятия – I-ая категория: линии непрерывной разливки стали, прокатные станы, электроножницы, холодильники, печи для разогрева проката; особая группа: АСУ ТП, РЗиА, эвакуационное освещение;
цементные заводы;
газо- и нефтепроводы - I-ая категория: все электрооборудование компрессорных и перекачивающих станций; особая группа: электрозадвижки, АСУ ТП, РЗиА, эвакуационное освещение;
карьеры;
информационно-вычислительные комплексы;
системы собственных нужд электростанций – особая группа.
Для обеспечения электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания. В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т. п.
Основные причины нарушения электроснабжения потребителей показаны на диаграмме (рисунок 1.1).
Рисунок 1.1 – Причины остановок ответственных потребителей
На основании данных [2,3] часовая стоимость простоя ответственных потребителей, связанная с перебоями электроснабжения, составляет:
в системах бронирования авиабилетов – 90 000 €;
в сфере телекоммуникаций – 1 800 000 €;
в сфере операций по кредитным картам – 2 500 000 €;
в банковской сфере – 6 000 000 €;
в сфере производства полупроводников – 3 800 000 €;
в сфере автомобилестроения – 6 000 000 € [4].
Для обеспечения бесперебойного электроснабжения потребителей особой группы первой категории все чаще используются источники бесперебойного питания (ИБП). На данный момент можно выделить три основных типа таких источников: статического, динамического (вращающегося) и гибридного типа.
Сравним источники бесперебойного питания статического типа топологии двойного преобразования (рисунок 1.2, а), получившей наибольшее распространение, и гибридного типа (рисунок 1.2, б) с точки зрения их функционирования при внешнем коротком замыкании. Сравнение основных характеристик функционирования представлены в таблице 1.1.
Рисунок 1.2 – Структурная схема источников бесперебойного питания статического (а) и гибридного типа (б)
Таблица 1.1
Сравнение характеристик функционирования ИБП при внешнем коротком замыкании
|
ИБП гибридного типа |
ИБП статического типа (двойного преобразования) |
Допустимая перегрузочная способность |
1,5 Iном в течение двух минут. |
1,5 Iном в течение одной минуты. Надо отметить, что перегрузочная способность в две минуты на практике зачастую не используется, так как перегрузки очень короткие: менее 1 секунды, например, пуск двигателя, трансформатора, силовой электроники. |
Токо-ограничение |
Высокое значение токов короткого замыкания генератора (до 7 Iном), что облегчает выбор аппарата защиты. |
В зависимости от производителя ограниченный ток находится на уровне 2-3 Iном (в отдельных случаях до 5 Iном). |
Гальваническая развязка |
Нижестоящая сеть гальванически изолирована от вышестоящего источника переменного тока блоком «двигатель-генератор». |
Гальваническая развязка вышестоящей сети и нагрузки может осуществляться с помощью использования изолирующих трансформаторов. |
Внутреннее сопротивление |
Внутреннее сопротивление обеспечивает высокую совместимость с нелинейными нагрузками, которые часто встречаются в импульсных источниках питания, используемых для электроснабжения компьютерных систем. |
Очень малое внутреннее сопротивление, получаемое за счёт использования силовой транзисторной техники, позволяет получить хорошую совместимость с нелинейной нагрузкой. |
Приведенные выше характеристики необходимо учитывать при выборе или разработке методик защиты и при построении схемы защиты [5].