
- •Московский энергетический институт (технический университет)
- •Задание на магистерскую диссертацию
- •Обоснование выбора темы диссертационной работы
- •2. Консультации по разделу
- •3. Консультации по разделу
- •4. План работы над магистерской диссертацией
- •5. Рекомендуемая литература
- •Краткие сведения о студенте:
- •Аннотация
- •Содержание
- •Введение
- •Глава 1. Электроснабжение ответственных потребителей. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •1.1. Электроснабжение ответственных потребителей.
- •1.2. Электроснабжение ответственных потребителей от источников бесперебойного питания статического типа.
- •1.3. Основные положения защиты от поражения электрическим током.
- •1.4. Выбор системы заземления нейтрали при питании ответственных потребителей.
- •1.4.1. Система заземления tn.
- •1.4.2. Система заземления it.
- •1.4.3. Система заземления tt.
- •1.5. Электрофизические реакции при протекании электрического тока через тело человека
- •1.6. Анализ требований к времени отключения токов повреждения в сетях 0.4 кВ в соответствии с новой нормативной базой.
- •Глава 2. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления tn.
- •2.1. Методика расчёта токов короткого замыкания и проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор
- •2.1.1. Расчет токов однофазного короткого замыкания в сетях tn.
- •2.1.2. Методика проверки эффективности работы защиты при косвенном прикосновении в сетях tn при питании через понижающий трансформатор.
- •Продолжение таблицы 2.2
- •2.2. Методика расчёта токов короткого замыкания и проверки защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •2.2.1 Расчет тока однофазного кз в сетях tn в инверторном режиме работы.
- •2.2.2 Расчет тока однофазного кз в сетях tn в режиме работы от сети.
- •2.2.3. Сравнение инверторного режима работы и режима работы от сети при расчета тока однофазного кз.
- •2.2.4. Методика проверки эффективности защиты при косвенном прикосновении в сетях tn при питании от ибп статического типа.
- •Глава 3. Методики расчета токов кз и проверки эффективности работы защиты при косвенном прикосновении в сетях с системой заземления it.
- •3.1. Методика расчёта токов короткого замыкания в сетях it при питании через понижающий трансформатор.
- •3.1.1. Первое замыкание.
- •3.1.1.1. Сеть it с изолированной и нераспределенной нейтралью.
- •3.1.1.2. Сеть it с заземленной через сопротивление и нераспределенной нейтралью.
- •3.1.1.3. Сеть it с изолированной и распределенной нейтралью.
- •3.1.2. Второе замыкание при не устраненном первом.
- •3.1.2.1. Сеть it с нераспределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.2. Сеть it с распределенной нейтралью и общим заземлителем потребителей.
- •3.1.2.3. Сеть it с нераспределенной нейтралью и отдельными заземлителями потребителей.
- •3.1.2.4. Сеть it с распределенной нейтралью и отдельными заземлителями потребителей.
- •3.2. Методика проверки эффективности работы защиты при косвенном прикосновении при питании через понижающий трансформатор.
- •3.3. Методики расчёта токов короткого замыкания при питании от ибп статического типа в сетях it.
- •3.3.1. Расчет тока кз в инверторном режиме и режиме работы от сети в сетях с нераспределенной нейтралью.
- •3.3.2. Расчет тока двухфазного кз в инверторном и режиме работы от сети в сетях с распределенной нейтралью.
- •3.4. Методика проверки эффективности работы защиты при косвенном прикосновении при питании от ибп статического типа.
- •3.5. Дополнительные мероприятия по обеспечению защиты при косвенном прикосновении при электроснабжении от источников бесперебойного питания.
- •3.6. Рекомендации по проектированию систем электроснабжения с источниками бесперебойного питания статического типа.
- •Заключение
- •Список используемых источников
3.1.1.2. Сеть it с заземленной через сопротивление и нераспределенной нейтралью.
Если в электроустановке используется система заземления IT с заземленной через сопротивление ZN нейтралью (рисунок 3.3), то комплексный ток замыкания определяется формулой (3.3):
,
(3.3)
где
Рисунок 3.3 – Система IT с заземленной через сопротивление ZN нераспределенной нейтралью.
В этом случае напряжение между корпусом электрооборудования и землей в месте замыкания и в этом случае мало и не представляет опасности. Поэтому электроустановка не нуждается в отключении.
3.1.1.3. Сеть it с изолированной и распределенной нейтралью.
Если нейтраль распределена (т.е. в электроустановке используется нейтральный проводник) и сопротивление ZN отсутствует (рисунок 3.2), напряжение смещения нейтрали вызывает дополнительный ток (3.4):
,
(3.4)
Аналогично формуле (3.2) получаем формулу (3.5)
;
(3.5)
где ω=314 — угловая частота; Cf – емкость фазы по отношению к земле; U0 – фазное напряжение сети.
Электроустановка так же не нуждается в отключении.
3.1.2. Второе замыкание при не устраненном первом.
В случае возникновения обоих замыканий на токоведущих частях одной фазы, ситуация не является опасной, и электроустановка может продолжать работу в таком режиме.
3.1.2.1. Сеть it с нераспределенной нейтралью и общим заземлителем потребителей.
Если замыкания возникают на разных фазах сети, когда все открытые проводящие части присоединены к одному заземляющему устройству, то через РЕ-проводник проходит ток двойного замыкания (рисунок 3.4).
Рисунок 3.4 – Двойное замыкание на разных фазах сети в системе IT с общим заземлителем.
Опасность поражения электрическим током в этой ситуации аналогична при замыкании в электроустановке с системой заземления TN и определяется формулой (3.6):
,
(3.6)
Если задать отношение площадей поперечных сечений фазного и нулевого защитного проводника, m, выражение (3.6) приобретает следующий вид (3.7)
,
(3.7)
Отключение при двойном замыкании в сети с данной конфигурацией должно осуществляться устройством защиты от сверхтоков.
3.1.2.2. Сеть it с распределенной нейтралью и общим заземлителем потребителей.
Если нейтраль распределена, а все открытые проводящие части присоединены к одному заземляющему устройству, то необходимо рассмотреть случай, когда одно замыкание происходит между нейтральным проводником и корпусом, а второе между фазным проводником и корпусом (рисунок 3.5).
Рисунок 3.5 – Двойное замыкание фазы и нейтрали в сети с распределенной нейтралью в системе IT с общим заземлителем.
В этом случае, как и в предыдущем, протекание тока короткого замыкания предоставляет опасность для получения электротравмы и должно производиться отключение устройством защиты от сверхтоков. Ток замыкания вычисляется по формуле (3.8):
,
(3.8)
Если задать отношение площадей поперечных сечений фазного и нулевого защитного проводника, m, допустить, что Rph=RN, и длины всех проводников одинаковы, то выражение (3.8) приобретает следующий вид (3.9)
,
(3.9)