
- •19. Проводники в электростатическом поле
- •20. Электрическая емкость уединенного проводника
- •21. Электроемкость плоского конденсатора
- •24. Соединение конденсаторов
- •25. Энергия электростатического поля
- •26. Постоянный ток, плотность тока. Элс и напряжение.
- •27. Закон Ома для участка цепи в интегральной и дифференциальной форме
- •28. Закон Ома для неоднородного и для замкнутой цепи
- •29. . Работа и мощность тока. Закон Джоуля — Ленца
- •30. Соединение проводников. Температурная зависимость сопротивления металлов.
- •31. Классическая теория электропроводности металлов
- •33. Собственная проводимость полупроводников.
- •34. Примесная проводимость полупроводников.
- •36. Магнитное поле. Магнитное взаимодействие токов.
- •37. Магнитный момент кругового потока
- •38. Индукция магнитного поля
28. Закон Ома для неоднородного и для замкнутой цепи
В неоднородный участок цепи, где действующую э.д.с. на участке 1—2 обозначим через а приложенную на концах участка разность потенциалов — через 1 —2.
Если ток проходит по неподвижным проводникам, образующим участок 1—2, то работа А12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q0 на участке 1—2, согласно (97.4),
Э.д.с. как и сила тока I, — величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1—2), то > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то < 0. За время t в проводнике выделяется теплота
Из формул (100.1) и (100.2) получим
29. . Работа и мощность тока. Закон Джоуля — Ленца
Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время dt через сечение проводника переносится заряд dq=Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле работа тока
Если сопротивление проводника R, то, используя закон Ома (98.1), получим
Из (99.1) и (99.2) следует, что мощность тока
Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Втч) и киловатт-час (кВтч). 1 Втч — работа тока мощностью 1 Вт в течение 1 ч; 1 Втч=3600 Bтc=3,6103 Дж; 1 кВтч=103 Втч= 3,6106 Дж.
Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,
Таким образом, используя выражения (99.4), (99.1) и (99.2), получим
Выделим
в проводнике элементарный цилиндрический
объем dV=dSdl
(ось цилиндра совпадает с направлением
тока), сопротивление которого
По закону Джоуля — Ленца, за время dt
в этом объеме выделится теплота
Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна
Используя дифференциальную форму закона Ома (j=Е) и соотношение =1/, получим
Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля—Ленца в дифференциальной форме, пригодным для любого проводника.
Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.
30. Соединение проводников. Температурная зависимость сопротивления металлов.
Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.
На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.