Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Praktikum_po_elektromagnetizmu.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.15 Mб
Скачать

Обработка результатов измерений.

  1. Рассчитайте значения неизвестных сопротивлений Rx1 и Rx2 по формуле (17).

  2. Рассчитайте абсолютные и относительные погрешности измерений сопротивлений по формулам:

; (20)

(21)

Примечание: при вычислениях принять, что абсолютные погрешности Δl1 и Δl2 равны цене минимального деления, измеряемого линейкой реохорда. Приборную абсолютную погрешность магазина сопротивлений ΔR0 принять равной 0,1 Ом. Результаты занесите в таблицу 2.

  1. По формуле рассчитайте сопротивление последовательного соединения резисторов.

  2. По формуле рассчитайте сопротивление параллельного соединения резисторов.

  3. Рассчитайте величину δR как разность между измеренными и расчетными значениями для последовательного и параллельного соединений резисторов.

  4. Сделайте вывод о том, почему расчетные значения для последовательного и параллельного соединений резисторов не совпадают с измеренными.

Контрольные вопросы

    1. Что называется электрическим током? Назовите условия существования электрического тока.

    2. Поясните причину возникновения электрического сопротивления.

    3. От каких параметров зависит сопротивление металлического проводника?

    4. В чем заключается физический смысл удельного сопротивления?

    5. Сформулируйте и запишите первое и второе правила Кирхгофа для разветвленных электрических цепей. Поясните условия их применения на примере условной цепи полученной у преподавателя.

    6. Какой участок электрической цепи называется однородным, неоднородным?

    7. Изложите идею метода определения сопротивлений при помощи моста Уитстона с фиксированными сопротивлениями и реохордного моста.

    8. Почему гальванометр мостовых схем может работать и в режиме амперметра, и в режиме вольтметра?

    9. Почему мостовые методы определения сопротивлений считают более точными, чем другие методы?

    10. Выведите формулы для расчета погрешностей.

Лабораторная работа №4 изучение работы полупроводникового диода

Цель работы: изучить свойства, принцип действия, применение полупроводникового диода и построить его вольт-амперную характеристику.

Оборудование: лабораторный стенд № 4 «Изучение работы полупроводникового диода».

Основные теоретические сведения

В зависимости от способности проводить электрический ток все твердые тела делятся на проводники, полупроводники и диэлектрики (изоляторы).

Полупроводниками являются вещества, занимающие промежуточное положение между проводниками и диэлектриками по своей способности проводить электрический ток.

Граница между полупроводниками и диэлектриками условна, так как диэлектрики при соответствующем значительном повышении температуры становятся подобными полупроводникам, а чистые полупроводники при весьма низкой температуре ведут себя как диэлектрики.

Характерной особенностью полупроводников является необычайно- высокая чувствительность к примесям. Чем лучше очистка полупроводника, тем выше его удельное сопротивление. При 300 К (27°С) удельное сопротивление германия 47 Ом∙м. Но достаточно добавить к 108 атомам германия один атом примеси, и его удельное сопротивление снижается до 4 Ом∙м.

В чистых полупроводниках (без примесей), находящихся при низких температурах, свободные электроны (электроны проводимости) отсутствуют, так как все они участвуют в образовании связей между атомами кристаллической решетки. Для того чтобы валентный электрон стал электроном проводимости и мог принимать участие в переносе заряда, необходимо сообщить атому дополнительную энергию. Это можно осуществить путем повышения температуры полупроводника или воздействуя на него излучением.

П роцесс отрыва электрона от нейтрального атома сопровождается образованием на его месте вакансии, которую называют дыркой (рис. 1).

В чистом полупроводнике число электронов проводимости равно числу вакансий. В результате теплового возбуждения электроны соседних нейтральных атомов могут переходить на вакантное место. Такое коллективное поочередное движение электронов, находящихся в основном в положении равновесия около атомов, можно представить в виде встречного потока положительно заряженных частиц, называемых дырками. Перемещение, как свободных электронов, так и дырок в отсутствие электрического поля носит хаотический характер.

Если к полупроводнику приложить определенную разность потенциалов, то возникает упорядочивающее электрическое поле и движение дырок и электронов примет направленный характер. Электроны будут перемещаться в сторону большего потенциала (против направления линий напряженности внешнего электрического поля), а дырки - в сторону меньшего потенциала (вдоль направления линий напряженности поля). Таким образом, в чистом полупроводнике имеется два вида проводимости - электронная и дырочная. Электронная проводимость (n - типа) обусловлена движением свободных электронов, а дырочная (p - типа) - коллективным движением связанных с атомами валентных электронов.

Собственной проводимостью называется электропроводность веществ, обусловленная свободными электронами и дырками, образовавшимися в равных количествах при тепловых движениях атомов.

В практических целях чаще используются полупроводники с добавками других элементов - примесей, наличие которых приводит к преобладанию одного из типов проводимости.

Т ак, если к четырехвалентному германию добавить незначительное количество пятивалентного мышьяка или сурьмы, то в нем образуется избыток слабосвязанных с ядром электронов (рис. 2). Обусловлено это тем, что четыре валентных электрона примеси участвуют в создании химической связи с атомом германия, а пятый валентный электрон оказывается слабо связанным с атомом примеси, поэтому он легко становится «свободным». Эти электроны уже при комнатной температуре могут принимать участие в создании тока проводимости.

Примеси, добавление которых к собственному полупроводнику приводит к увеличению концентрации свободных электронов, называются донорными, а проводимость в этом случае будет электронной (n-типа).

Д обавление к германию примеси с валентностью, равной трем, например, бора или индия, приводит к повышению концентрации дырок (рис. 3). Объясняется это нехваткой у атома индия одного электрона для установления прочной связи с атомом германия, при этом между этими двумя атомами получается незаполненная валентная связь, или «дырка». Число дырок в кристалле равно числу атомов примеси.

Примеси, при добавлении которых к чистому полупроводнику возрастает концентрация дырок, называются акцепторными, а проводимость будет дырочной (p-типа).

Примесной называется проводимость, обусловленная присутствием в полупроводнике примесей какого-либо типа.

Большая часть полупроводниковых приборов работает на основе электронно-дырочного перехода, который представляет собой границу между двумя областями полупроводника, одна из которых p – типа, а другая n – типа. Создание такого перехода осуществляется, например, диффузионным способом или путем ионной имплантации (ионной бомбардировкой поверхности полупроводника с последующим высокотемпературным отжигом).

В p - области перехода основными носителями являются дырки, а неосновными - электроны. В n – области, наоборот, основными носителями являются электроны, а неосновными - дырки. Следовательно, в каждой области концентрация основных носителей много больше концентрации неосновных носителей заряда и в области контакта полупроводников с различным типом проводимости существует градиент концентрации электронов и дырок, вызывающий их диффузию через пограничный слой во встречных направлениях.

В результате ухода электронов и дырок из атомов в приконтактных областях возникает область положительно и отрицательно заряженных ионов (доноров и акцепторов) – двойной запирающий слой. Этот слой обладает большим сопротивлением, так как в нем отсутствуют свободные носители заряда. Сами электроны и дырки, перейдя в соседние области p-n перехода, рекомбинируют (нейтрализуются) там с основными носителями. Таким образом, на границе двух полупроводников появляется контактное поле напряженностью Ek (рис. 4).

Н аправление контактного поля таково, что оно препятствует дальнейшему переходу через двойной слой основных носителей с той и другой стороны p-n перехода и, наоборот, способствует переносу неосновных носителей.

Если на p - полупроводник подать положительный потенциал, а на n - полупроводник - отрицательный, то двойной слой обогатится основными носителями заряда и его сопротивление снизится (прямое смещение p-n перехода). Если на p - область подать отрицательный потенциал, а на n - область - положительный, то основные носители заряда будут оттягиваться от области двойного электрического слоя, ширина его увеличится и сопротивление возрастет (обратное смещение перехода). Ток через p-n переход будет мал и обусловлен движением неосновных носителей заряда, концентрация которых незначительна. Такой ток называют обратным или тепловым. Таким образом, сопротивление p-n перехода при одном направлении тока больше, чем при другом, следовательно, p-n переход хорошо пропускает ток только в одном направлении (обладает выпрямляющими свойствами). Эти свойства легли в основу работы полупроводникового диода - полупроводникового прибора с одним p-n переходом и двумя выводами. Электронно-дырочный переход нельзя получить, наложив одну на другую пластины, изготовленные из полупроводников с различной примесной проводимостью, так как между пластинами неизбежно наличие поверхностных пленок или очень тонкого слоя воздуха. Такой переход создается лишь посредством образования областей с различными электропроводностями в одной пластине полупроводника методом вплавления.

Важнейшее значение в теории полупроводниковых приборов представляет аналитическая зависимость между напряжением, приложенным к p-n переходу и возникающим при этом током. Такая зависимость называется вольт-амперной характеристикой p-n перехода (диода) и описывается уравнением:

(1)

где - тепловой ток p-n перехода,

- приложенное к переходу напряжение (учитывает знак)

- температурный потенциал, определяемый по формуле:

(2)

где - постоянная Больцмана,

- абсолютная температура среды

е - заряд электрона.

А нализ выражения (1) для комнатных температур ( 300 К, В) показывает следующее. При прямых напряжениях, превышающих 0,1 В, можно пренебречь единицей по сравнению с экспоненциальной составляющей, а при отрицательных напряжениях В, наоборот, значение экспоненциальной составляющей становится пренебрежимо малым по сравнению с единицей. Следовательно, график роста прямого тока через полупроводниковый диод с увеличением прямого напряжения представляет собой экспоненциальную кривую. При обратном включении ток через диод становится очень малым, определяется только тепловым током и не зависит от напряжения. Таким образом, величина и направление тока, протекающего через p-n переход (диод), зависят от величины и знака приложенного к переходу напряжения.

На рис. 5 приведена вольт-амперная характеристика идеального полупроводникового диода. Для реальных диодов вольт-амперная характеристика может иметь несколько иной, но похожий вид.

При прямом токе характеристика имеет вид круто восходящей ветви. На участке 1 и прямой ток мал. На участке 2 запирающий слой отсутствует, ток определяется только сопротивлением полупроводника. В обратном направлении ток быстро достигает насыщения и не изменяется до некоторого предельного обратного напряжения Uпр, после чего резко возрастает. На участке 3 запирающий слой препятствует движению основных носителей, а небольшой ток определяется движением неосновных носителей заряда. При напряжении, большем предельного (Uпр), наступает пробой p-n перехода и обратный ток Iобр быстро растет (участок 4). Напряжение Uпр еще называют напряжением пробоя или пробойным напряжением диода. Напряжение пробоя диода – это одна из характеристик, определяющих его режим работы. При использовании диодов в выпрямительных устройствах работа при обратных напряжениях, близких к Uпр, не допускается, так как может привести к выводу диода из строя. В этом случае p-n переход «выгорает» и диод становится проводником, одинаково хорошо пропускающим ток в обоих направлениях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]