
- •Содержание.
- •Ведение
- •Лекция №1 термодинамические и теплофизические свойства энергоносителей и материалов, применяемых в системах создания микроклимата в помещениях зданий.
- •1.1 Основные термодинамические понятия Параметры состояния и термодинамический процесс.
- •Первый закон термодинамики.
- •Универсальное уравнение состояния идеального газа.
- •Основные положения второго закона термодинамики.
- •Цикл и теоремы Карно.
- •Политропный процесс
- •Свойства реальных газов.
- •1.2 Термодинамические процессы водяного пара. Понятия о водяном паре
- •Процесс парообразования в координатах р—V.
- •Процесс парообразования в координатах I-s.
- •1.3 Термодинамические процессы влажного воздуха.
- •Теплофизические свойства теплоносителей. Теплоносители.
- •Санитарно-гигиенические требования к теплоносителям.
- •Экономические требования к теплоносителям.
- •Эксплуатационные показатели.
- •1.5.Теплотехнические свойства строительных материалов.
- •Пористость и объемный вес.
- •Влажность.
- •Теплопроводность.
- •Теплоемкость.
- •1.5.Заключение
- •Лекция№2: нормативная документация и терминология по климатологии, строительной теплотехнике, системам кондиционирования микроклимота.
- •2.1 Нормативная документация по микроклимату в помещениях и скм Перечень нормативных документов и область их применения.
- •СНиП 23-01-99*. “Строительная климатология”
- •Классификация помещений.
- •Параметры микроклимата.
- •2.3 Терминология и основные разделы по строительной климатологии (согласно сНиП 23-01-99*). Термины и определения
- •Расчетные параметры наружного воздуха для проектирования систем овк.
- •2.4 Терминология и основные разделы сНиП 41-01-2003. Отопление вентиляция и кондиционирование(от 1 января 2004г.) Термины и их определение.
- •Общие положения.
- •Параметры внутреннего воздуха при отоплении и вентиляции помещений.
- •Параметры микроклимата при кондиционировании помещений.
- •Параметры внутреннего воздуха в производственных помещениях с автоматизированным технологическим оборудованием.
- •Параметры внутреннего воздуха при других технологических и тепловых условиях.
- •Концентрация вредных веществ в помещениях.
- •Параметры наружного воздуха.
- •2.5 Терминология и основные разделы сНиП II-3-79*(издание 1998г). Термины, примененные в сНиП II-3-79*(ключевые слова).
- •Термины из других нормативных документов, применяемые в сНиП II-3-79* .
- •Краткое содержание.
- •Общие требования и показатели микроклимата
- •Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий.
- •Перечень наиболее гигиенически значимых веществ, загрязняющих воздушную среду помещений жилых зданий.
- •2.8. Заключение.
- •Лекция №3: микроклимат помещения и системы его обеспечения.
- •3.1. Теплообмен человека и условия комфортности. Понятие микроклимата и физиологические предпосылки для его создания.
- •Условия комфортности.
- •Нормативные требования к микроклимату в помещении.
- •3.2. Расчётные параметры микроклимата в помещениях.
- •3.3. Зимние и летние расчётные климатические условия для систем обеспечения микроклимата.
- •3.4 Системы создания микроклимата в помещении.
- •3.5 Заключение.
- •Лекция №4: тепловлажностный и воздушный режимы помещений.
- •4.1. Факторы, определяющие микроклимат в помещениях.
- •4.2. Особенности теплового режима здания. Назначение теплового режима.
- •Тепловые условия в помещении.
- •Теплообмен в помещении.
- •4.3. Зимний воздушно-тепловой режим помещений. Расчётные климатические условия.
- •Тепловой баланс помещений.
- •Влияние теплозащитных свойств ограждений на воздушно-тепловой режим помещения.
- •Воздухопроницаемость ограждающих конструкций и её влияние на воздушно-тепловой и влажностный режим помещения.
- •Влажность воздуха помещения и её влияние на воздушно-тепловой режим помещения.
- •4.4. Летний воздушно-тепловой режим помещений. Особенности летнего теплового режима.
- •Средства для подержания летнего теплового режима.
- •Тепловой баланс помещения в летний период года.
- •4.5. Заключение.
- •Лекция №5: теплопередача в ограждающих конструкциях здания при стационарном тепловом потоке.
- •5.1.Общие закономерности.
- •5.2.Расчёт сопротивления теплопередаче ограждений.
- •5.3. Сопротивления теплообмену и коэффициенты теплоотдаче у поверхности ограждения.
- •5.4. Термическое сопротивление ограждения.
- •5.5. Расчёт температуры в ограждении.
- •5.6. Нормирование сопротивления теплопередаче.
- •5.7. Теплоустойчивость ограждающих конструкций.
- •5.7. Заключение.
- •Лекция №6: воздухопроницание ограждающих конструкций зданий.
- •Ветровое давление.
- •Совместное действие на здание гравитационного и ветрового давлений.
- •6.2. Воздухопроницаемость материалов.
- •6.3. Воздухопроницаемость ограждений.
- •6.4. Расчёт воздухопроницания через ограждения.
- •6.5. Заключение.
- •Лекция №7: влажный воздух и его применение в системах кондиционирования микроклимата.
- •7.1. Общие сведения о влажном воздухе. Определение и область применения воздуха.
- •Состояние и состав воздуха.
- •7.2 Основные характеристики влажного воздуха Определение характеристик воздуха.
- •Средства и методы контроля влажности воздуха.
- •Значение параметра влажности воздуха как экологического показателя среды.
- •7.3 Определение параметров тепловлажностного состояния воздуха по I-d диаграмме. Принцип определения параметров воздуха по I-d диаграмме.
- •Сущность аспирационного метода определения относительной влажности.
- •Примеры построения тепловлажностностных процессов в I-d диаграмме.
- •7.4 Теплотехнические свойства влажного воздуха.
- •Теплофизические свойства сухого воздуха при нормальном атмосферном давлении *
- •7.5 Заключение.
- •Лекция 8. Влажностный режим зданий и его влияние на микроклимат в помещениях.
- •8.1 Общие понятия о влажностном режиме наружных ограждений. Предмет изучения влажностного режима наружных ограждений.
- •Значение влажностного режима наружных ограждений.
- •Причины появления влаги в наружных ограждениях.
- •8.2 Конденсация и сорбция водяного пара. Влажностные характеристики внутреннего и наружного воздуха.
- •Конденсация влаги на поверхности ограждения.
- •Меры против конденсации влаги на поверхности ограждения.
- •Сорбция и десорбция.
- •8.3 Перемещение в ограждении парообразной влаги. Физическая сущность паропроницаемости.
- •Количественные зависимости для расчета паропроницаемости.
- •8.4 Расчет влажностного режима при стационарных условиях диффузии водяного пара. Особенности расчета влажностного режима.
- •Методика расчета влажностного режима.
- •Факторы, влияющие на влажностный режим ограждения.
- •Анализ условий для просыхания ограждения.
- •Оценка результатов расчета влажностного режима.
- •Расчет влажностного режима при нестационарных условиях диффузии водяного пара.
- •8.5 Меры против конденсации в ограждениях
- •8.6 Влажностный режим бесчердачных перекрытий
- •8.7. Перемещение жидкой влаги в ограждении Механизм перемещения влаги.
- •Условия для перемещения влаги в строительных материалах.
- •8.8 Заключение
- •Лекция № 9 системы кондиционирования микроклимата в помещениях.
- •9.1. Санитарно-гигиенические основы систем кондиционирования микроклимата
- •9.2.Организация воздухообмена в помещении.
- •Понятие о способах организации воздухообмена и устройстве систем вентиляции.
- •Схемы воздухораспределения в помещениях.
- •Воздухораспределение струями.
- •9.3 Организация теплообмена в помещениях. Общие замечания.
- •9.4 Особенности и области применения систем создания микроклимата в помещениях. Назначение систем кондиционирования микроклимата в помещениях.
- •Виды и область применения систем отопления.
- •Типы и разновидности отопительных приборов.
- •9.5 Энергосбережение и микроклимат в помещении.
- •9.6.Заключение
- •Список рекомендуемой литературы.
7.3 Определение параметров тепловлажностного состояния воздуха по I-d диаграмме. Принцип определения параметров воздуха по I-d диаграмме.
По i-d диаграмме можно определить температуру точки росы (на пересечении с линией φ = const линии d = const, идущей от точки, характеризующей исходное состояние воздуха) и температуру “мокрого” термометра, под которой понимают температуру, принимаемую влажным воздухом при достижении им насыщенного состояния и сохранении воздухом постоянной энтальпии, равной начальной. Для этого через точку соответствующую состоянию влажного воздуха, проводят линию i = const до пересечения с кривой φ = 100%. Изотерма, проходящая через полученную точку пересечения, определит искомую температуру «мокрого» термометра.
В
i-d диаграмме
могут быть изображены основные процессы
изменения тепловлажностного состояния
воздуха. Если параметры начального
состояния воздуха
,
,
а конечного -
,
,
то
,
где
- угловой коэффициент луча процесса,
характеризующий изменение состояния
воздуха на диаграмме.
Сущность аспирационного метода определения относительной влажности.
Сущность аспирационного метода определения относительной влажности заключается в следующем (рисунок 3.13).
Рисунок
3.13 - Определение относительной влажности
с помощью I-d диаграммы влажного
воздуха по показаниям
Аспирационный психрометр состоит из двух параллельно расположенных металлических трубок (экранов от лучистого теплообмена) с ртутными термометрами и вентилятора (аспиратора). Верхние концы трубок соединены с входом вентилятора, нижние концы открыты. В трубках имеются продольные вырезы для визуально контроля температуры по термометрам. Вентилятор имеет механический (пружинный), или электрический привод. Поверхность ртутного резервуара одного из термометров обернута батистом. Перед началом работы батист смачивается дистиллированной водой. Поэтому этот термометр называют «мокрым» и его показания обозначают tм, второй – «сухим» и его показания соответствуют температуре окружающего воздуха tв. Вентилятор прокачивает воздух через трубки, обеспечивая интенсивное испарение воды с батиста. Так как испарение воды идет с отводом тепла от резервуара «мокрого» термометра, то его собственная температура понижается и через 3-4 минуты достигает минимального значения, которое соответствует температуре насыщения воздуха. Алгоритм определения относительной влажности (на рисунок 2.13 показан стрелками):
- по изотерме, определяемой температурой tм «мокрого» термометра, до пересечения с линией насыщения φ =100% (точка 1);
- от точки 1 по адиабате I=const до пересечения с изотермой, определяемой температурой tв«сухого» термометра (точка 2);
- по линии постоянной относительной влажности φ, проходящей через точку 2, определяется действительное относительная влажность воздуха.I-d диаграмма влажного воздуха для атмосферного давления 745 мм рт. ст. представлена на рисунок 3.14.
Примеры построения тепловлажностностных процессов в I-d диаграмме.
Характерные построения процессов на i-d диаграмме показаны на нижеследующем рисунке, которым предшествует определение параметров тепловлажностного состояния воздуха.
Воздух с параметрами точки 1 ( , ) нагревается при постоянном влагосодержании
. Изовлажностный процесс нагревания соответствует значению углового коэффициента:
,
Процесс изображается вертикальным лучём, проведённым из начальной точки 1 до некоторой точки 2
В
оздух с параметрами точки 1 ( , ) поглощает одновременно и теплоту, и влагу. Если конечное состояние воздуха характеризуется параметрами
,
, то направление луча искомого процесса отобразится отношением
, что соответствует направлению луча между точками 1-3.
Воздух с параметрами точки 1 ( , ) адиабатически увлажняется:
. В этом случае угловой коэффициент выразится соотношением:
.
Процесс протекает по лучу i = const от точки 1 до точки 4.
Воздух в процессе охлаждения отдает теплоту при неизменном влагосодержании
. Как в первом случае, луч процесса параллелен линии d=const, но так как
, то
Процесс протекает по лучу от точки 1 по вертикали вниз до точки 5.