
- •Содержание.
- •Ведение
- •Лекция №1 термодинамические и теплофизические свойства энергоносителей и материалов, применяемых в системах создания микроклимата в помещениях зданий.
- •1.1 Основные термодинамические понятия Параметры состояния и термодинамический процесс.
- •Первый закон термодинамики.
- •Универсальное уравнение состояния идеального газа.
- •Основные положения второго закона термодинамики.
- •Цикл и теоремы Карно.
- •Политропный процесс
- •Свойства реальных газов.
- •1.2 Термодинамические процессы водяного пара. Понятия о водяном паре
- •Процесс парообразования в координатах р—V.
- •Процесс парообразования в координатах I-s.
- •1.3 Термодинамические процессы влажного воздуха.
- •Теплофизические свойства теплоносителей. Теплоносители.
- •Санитарно-гигиенические требования к теплоносителям.
- •Экономические требования к теплоносителям.
- •Эксплуатационные показатели.
- •1.5.Теплотехнические свойства строительных материалов.
- •Пористость и объемный вес.
- •Влажность.
- •Теплопроводность.
- •Теплоемкость.
- •1.5.Заключение
- •Лекция№2: нормативная документация и терминология по климатологии, строительной теплотехнике, системам кондиционирования микроклимота.
- •2.1 Нормативная документация по микроклимату в помещениях и скм Перечень нормативных документов и область их применения.
- •СНиП 23-01-99*. “Строительная климатология”
- •Классификация помещений.
- •Параметры микроклимата.
- •2.3 Терминология и основные разделы по строительной климатологии (согласно сНиП 23-01-99*). Термины и определения
- •Расчетные параметры наружного воздуха для проектирования систем овк.
- •2.4 Терминология и основные разделы сНиП 41-01-2003. Отопление вентиляция и кондиционирование(от 1 января 2004г.) Термины и их определение.
- •Общие положения.
- •Параметры внутреннего воздуха при отоплении и вентиляции помещений.
- •Параметры микроклимата при кондиционировании помещений.
- •Параметры внутреннего воздуха в производственных помещениях с автоматизированным технологическим оборудованием.
- •Параметры внутреннего воздуха при других технологических и тепловых условиях.
- •Концентрация вредных веществ в помещениях.
- •Параметры наружного воздуха.
- •2.5 Терминология и основные разделы сНиП II-3-79*(издание 1998г). Термины, примененные в сНиП II-3-79*(ключевые слова).
- •Термины из других нормативных документов, применяемые в сНиП II-3-79* .
- •Краткое содержание.
- •Общие требования и показатели микроклимата
- •Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий.
- •Перечень наиболее гигиенически значимых веществ, загрязняющих воздушную среду помещений жилых зданий.
- •2.8. Заключение.
- •Лекция №3: микроклимат помещения и системы его обеспечения.
- •3.1. Теплообмен человека и условия комфортности. Понятие микроклимата и физиологические предпосылки для его создания.
- •Условия комфортности.
- •Нормативные требования к микроклимату в помещении.
- •3.2. Расчётные параметры микроклимата в помещениях.
- •3.3. Зимние и летние расчётные климатические условия для систем обеспечения микроклимата.
- •3.4 Системы создания микроклимата в помещении.
- •3.5 Заключение.
- •Лекция №4: тепловлажностный и воздушный режимы помещений.
- •4.1. Факторы, определяющие микроклимат в помещениях.
- •4.2. Особенности теплового режима здания. Назначение теплового режима.
- •Тепловые условия в помещении.
- •Теплообмен в помещении.
- •4.3. Зимний воздушно-тепловой режим помещений. Расчётные климатические условия.
- •Тепловой баланс помещений.
- •Влияние теплозащитных свойств ограждений на воздушно-тепловой режим помещения.
- •Воздухопроницаемость ограждающих конструкций и её влияние на воздушно-тепловой и влажностный режим помещения.
- •Влажность воздуха помещения и её влияние на воздушно-тепловой режим помещения.
- •4.4. Летний воздушно-тепловой режим помещений. Особенности летнего теплового режима.
- •Средства для подержания летнего теплового режима.
- •Тепловой баланс помещения в летний период года.
- •4.5. Заключение.
- •Лекция №5: теплопередача в ограждающих конструкциях здания при стационарном тепловом потоке.
- •5.1.Общие закономерности.
- •5.2.Расчёт сопротивления теплопередаче ограждений.
- •5.3. Сопротивления теплообмену и коэффициенты теплоотдаче у поверхности ограждения.
- •5.4. Термическое сопротивление ограждения.
- •5.5. Расчёт температуры в ограждении.
- •5.6. Нормирование сопротивления теплопередаче.
- •5.7. Теплоустойчивость ограждающих конструкций.
- •5.7. Заключение.
- •Лекция №6: воздухопроницание ограждающих конструкций зданий.
- •Ветровое давление.
- •Совместное действие на здание гравитационного и ветрового давлений.
- •6.2. Воздухопроницаемость материалов.
- •6.3. Воздухопроницаемость ограждений.
- •6.4. Расчёт воздухопроницания через ограждения.
- •6.5. Заключение.
- •Лекция №7: влажный воздух и его применение в системах кондиционирования микроклимата.
- •7.1. Общие сведения о влажном воздухе. Определение и область применения воздуха.
- •Состояние и состав воздуха.
- •7.2 Основные характеристики влажного воздуха Определение характеристик воздуха.
- •Средства и методы контроля влажности воздуха.
- •Значение параметра влажности воздуха как экологического показателя среды.
- •7.3 Определение параметров тепловлажностного состояния воздуха по I-d диаграмме. Принцип определения параметров воздуха по I-d диаграмме.
- •Сущность аспирационного метода определения относительной влажности.
- •Примеры построения тепловлажностностных процессов в I-d диаграмме.
- •7.4 Теплотехнические свойства влажного воздуха.
- •Теплофизические свойства сухого воздуха при нормальном атмосферном давлении *
- •7.5 Заключение.
- •Лекция 8. Влажностный режим зданий и его влияние на микроклимат в помещениях.
- •8.1 Общие понятия о влажностном режиме наружных ограждений. Предмет изучения влажностного режима наружных ограждений.
- •Значение влажностного режима наружных ограждений.
- •Причины появления влаги в наружных ограждениях.
- •8.2 Конденсация и сорбция водяного пара. Влажностные характеристики внутреннего и наружного воздуха.
- •Конденсация влаги на поверхности ограждения.
- •Меры против конденсации влаги на поверхности ограждения.
- •Сорбция и десорбция.
- •8.3 Перемещение в ограждении парообразной влаги. Физическая сущность паропроницаемости.
- •Количественные зависимости для расчета паропроницаемости.
- •8.4 Расчет влажностного режима при стационарных условиях диффузии водяного пара. Особенности расчета влажностного режима.
- •Методика расчета влажностного режима.
- •Факторы, влияющие на влажностный режим ограждения.
- •Анализ условий для просыхания ограждения.
- •Оценка результатов расчета влажностного режима.
- •Расчет влажностного режима при нестационарных условиях диффузии водяного пара.
- •8.5 Меры против конденсации в ограждениях
- •8.6 Влажностный режим бесчердачных перекрытий
- •8.7. Перемещение жидкой влаги в ограждении Механизм перемещения влаги.
- •Условия для перемещения влаги в строительных материалах.
- •8.8 Заключение
- •Лекция № 9 системы кондиционирования микроклимата в помещениях.
- •9.1. Санитарно-гигиенические основы систем кондиционирования микроклимата
- •9.2.Организация воздухообмена в помещении.
- •Понятие о способах организации воздухообмена и устройстве систем вентиляции.
- •Схемы воздухораспределения в помещениях.
- •Воздухораспределение струями.
- •9.3 Организация теплообмена в помещениях. Общие замечания.
- •9.4 Особенности и области применения систем создания микроклимата в помещениях. Назначение систем кондиционирования микроклимата в помещениях.
- •Виды и область применения систем отопления.
- •Типы и разновидности отопительных приборов.
- •9.5 Энергосбережение и микроклимат в помещении.
- •9.6.Заключение
- •Список рекомендуемой литературы.
Состояние и состав воздуха.
Влажным воздухом называется парогазовая смесь, состоящая из сухого воздуха и водяных паров. Знание его свойств инженеру-строителю необходимо для понимания и расчета таких технических устройств, как сушилки, системы отопления и вентиляции и т. п.
Состав сухой части атмосферного воздуха
Наименование элемента |
Процентное содержание (%) |
Молекулярный вес |
Азот N2 |
78,8 |
28 |
Кислород O2 |
20,95 |
32 |
Аргон Ar |
0,93 |
40 |
Углекислый газ CO2 |
0,3 |
48 |
Водород H2 |
5·10-5 |
2 |
Гелий He |
5·10-4 |
4 |
Неон Ne |
1,8·10-3 |
20 |
Озон O3 |
1·10-6 |
48 |
Криптон Kr |
1·10-4 |
84 |
Ксенон Xe |
8 ·10-6 |
131 |
Радон Rn |
6·10-18 |
222 |
Влажный воздух, содержащий максимальное количество водяного пара при данной температуре, называется насыщенным. Воздух, в котором не содержится максимально возможное при данной температуре количество водяного пара, называется ненасыщенным. Ненасыщенный влажный воздух состоит из смеси сухого воздуха и перегретого водяного пара, а насыщенный влажный воздух из сухого воздуха и насыщенного водяного пара. Водяной пар содержится в воздухе обычно в небольших количествах и в большинстве случаев в перегретом состоянии, поэтому к нему с достаточной для технических расчетов точностью могут быть применены законы идеальных газов.
Давление влажного воздуха
,
согласно закону Дальтона, равно:
=
,
где
- парциальные давления соответственно
сухого воздуха и водяного пара, Па.
Парциальное давление
можно определить
из таблиц насыщенного пара
по температуре точки росы, т, е. по той
температуре, до которой нужно охладить
ненасыщенный воздух с температурой t
при постоянном влагосодержании,
чтобы он стал насыщенным (при некоторой
температуре tп
< tв,
где индексы «п» и «в» относятся к пару
и сухому воздуху).
Давление насыщенных паров воды сильно растёт при увеличении температуры . Поэтому при изобарическом (то есть, при постоянном давлении) охлаждении воздуха с постоянной концентрацией пара наступает момент (точка росы), когда пар насыщается. При этом «лишний» пар конденсируется в виде тумана или кристалликов льда. Процессы насыщения и конденсации водяного пара играют огромную роль в физике атмосферы: процессы образования облаков и образование атмосферных фронтов в значительной части определяются процессами насыщения и конденсации, теплота, выделяющаяся при конденсации атмосферного водяного пара обеспечивает энергетический механизм возникновения и развития тропических циклонов (ураганов).
7.2 Основные характеристики влажного воздуха Определение характеристик воздуха.
К основным характеристикам влажного воздуха относятся:
- Абсолютная влажность D, которая определяет массу водяного пара (влаги), содержащегося в 1 м3 влажного воздуха.
Абсолютную влажность из-за малой величины обычно измеряют в г/м³. Но в связи с тем, что при определённой температуре воздуха в нем может максимально содержаться только определённое количество влаги (с увеличением температуры это максимально возможное количество влаги увеличивается, с уменьшением температуры воздуха максимальное возможное количество влаги уменьшается), введено понятие относительной влажности.
- Относительная
влажность, которая определяет степень
насыщения воздуха водяным паром:
,
т. е. отношение
действительной абсолютной влажности
к максимально возможной
абсолютной влажности в насыщенном
воздухе при той же температуре,
выраженных через отношение плотностей
(
)
или давлений (p) по закону
Бойля-Мариотта, где индекс «п» и «н»
относятся к пару в ненасыщенном и
насыщенном состояниях.
В отсутствие центров конденсации при снижении температуры возможно образование пересыщенного состояния, то есть относительная влажность становится более 100 %. В качестве центров конденсации могут выступать ионы или частицы аэрозолей, именно на конденсации пересыщенного пара на ионах, образующихся при прохождении заряженной частицы в таком паре основан принцип действия камеры Вильсона и диффузионных камер: капельки воды, конденсирующиеся на образовавшихся ионах образуют видимый след (трек) заряженной частицы.
Другим примером конденсации перенасыщенного водяного пара являются инверсионные следы самолётов, возникающие при конденсации перенасыщенного водяного пара на частицах сажи выхлопа двигателей.
Для насыщенного
воздуха
=1
или 100%, а для ненасыщенного влажного
воздуха
<1,
для перенасыщенного паром состояния
воздуха
1.
- Влагосодержание воздуха d, г/кг сухого воздуха, т. е. отношение массы водяного пара к единице массы сухого воздуха, содержащегося во влажном воздухе:
,
где
,
- масса водяного пара и сухого воздуха
во влажном воздухе.
С учётом уравнения состояния Клапейрона влагосодержание воздуха можно определить
где
,
- молекулярная масса водяного пара и
воздуха; pп и pв
– парциальные давления водяного пара
и сухого воздуха.
Подставив соответствующие значения молекулярных масс, получим:
Наряду с вышеназванными характеристиками энтальпия i влажного воздуха является одним из основных его параметров и широко используется при расчетах сушильных установок, систем вентиляции и кондиционирования воздуха. Энтальпию влажного воздуха обычно относят к единице массы сухого воздуха, т. е. к 1кг, и определяют как сумму сухого воздуха и водяного пара, кДж/кг сухого воздуха:
i=1.005t+(2500+1.8068t)d
Так
как теплоемкость влажного воздуха
1.005+1.8068
d
кДж/кг сухого воздуха, то
i=
t+2500 d
.