
- •Глава IV. Элементы теории электропроводности полупроводников.
- •§1. Представление о рассеянии и дрейфе носителей заряда в полупроводниках.
- •§2. Дрейфовая электропроводность в полупроводнике.
- •§3. Диффузионная электропроводность в полупроводнике. Соотношения Эйнштейна.
- •§4. Температурная зависимость подвижности носителей заряда в полупроводниках.
- •§5. Температурная зависимость подвижности при смешанном механизме рассеяния носителей заряда.
- •§6. Разогрев носителей заряда в сильных электрических полях.
- •При всех механизмах рассеяния скорость носителей заряда равна:
- •§7. Термоэлектронная ионизация Френкеля.
- •§8. Ударная ионизация в полупроводниках.
- •§9. Туннельный эффект в полупроводниках (электростатическая ионизация Зинера).
- •§10. Отрицательная дифференциальная проводимость (одп) полупроводников с двух долинной зонной структурой.
- •§11. Колебания тока в двухдолинных полупроводниках (эффект Ганна).
- •§12. Токи ограниченные пространственным зарядом (топз) в полупроводниках без “ловушек”.
- •§13. Топз в полупроводниках с ловушками.
- •§14. Основные свойства сверхпроводящего состояния твердых тел.
- •§15. Природа сверхпроводимости (теория бкш).
- •§16. Применение сверхпроводимости.
§10. Отрицательная дифференциальная проводимость (одп) полупроводников с двух долинной зонной структурой.
Н
а
ВАХ
ряда полупроводников в сильных
электрических полях наблюдаются участки
ОДП (когда
)
N
или S
типа.
Н
а
образах с ОДП N-типа
напряженность электрического поля в
области токов
является многозначной функцией плотности
тока. На образах с ОДП S-типа
плотность тока в области токов
является функцией напряженности
электрического поля. Будем рассматривать
ВАХ с ОДП N-типа.
Одной из возможных причин ОДП N-типа
является изменение подвижности носителей
заряда в результате междолинных переходах
в сильных электрических полях. Для
определенности будем рассматривать
полупроводник
- типа. Представим, что в его зоне
проводимости имеется по крайне мере
два энергетических минимума (две долины),
разделенных небольшим интервалом
энергий
.
Например, в кристаллах арсенида галия
(GaAs)
- типа в зоне проводимости основной
минимум лежит в центре зоны Бриллюэна
(
),
а второй минимум лежит на оси 100
на расстоянии от центра зоны Бриллюэна
равном
,
a
– постоянная решетки. Дно зоны проводимости
определяется абсолютным минимумом
первой долины.
Д
ля
GaAs:
,
(легкие электроны),
(тяжелые электроны),
.
Следовательно, подвижность электронов:
в первой долине будет значительно
больше, чем во второй
.
В нормальных условиях (слабые электрические
поля) очевидно электронная температура
рана
(не разогретые электроны). Их концентрация
в долинах будет определяться соотношением:
,
,
При
для GaAs
,
т.е. практически все электроны будут
находиться в первой долине. Будем
считать, что концентрация электронов
не зависит от электрического поля.
Электрическое
поле только перераспределяет электроны
между первой и второй долиной. Значит,
в слабых электрических полях
и электропроводность полупроводника
будет равна:
Если
подвижность носителей заряда достаточно
велика, то в сильных электрических полях
они заметно разогреваются (неравновесные
условия,
).
Например, в кристалле GaAs
- типа при T
= 3000
K
и
,
то Te
= 6000
K.
Тогда в неравновесных условиях:
Значит в этих условиях 10% электронов переходят во вторую долину. С увеличением все большая часть электронов будет переходить с первой во вторую долину. Тогда ВАХ такого образа буде определяться соотношением:
,
проводимость при равновесных условиях
с ростом
увеличивается, и следовательно
будет увеличиваться и может случиться
так, что
будет падать быстрее, чем растет поле,
тогда на ВАХ появляется падающий участок
(ОДП). В слабых электрических полях
и тогда
В
очень сильных электрических полях:
,
,
тогда
В
промежуточной области рост тока
будет замедлятся, и когда большая часть
электронов будет переходить во вторую
долину ток будет падать с ростом
(участок BC).
,
,
Зная из эффекта Холла подвижность в первой долине можно определить подвижность электронов во второй долине.
ОДП
N-типа
в двухдолинных полупроводниках
соответствует отрицательной
дифференциальной проводимости электронов
.
Действительно, среднее значение дрейфовой
скорости электронов будет определяться
из соотношения:
,
.
В
очень слабых электрических полях
,
,
тогда
В очень сильных
электрических полях
,
,
тогда
Т
огда
зависимость средней дрейфовой скорости
от Е в двухдолинных полупроводниках
будет иметь вид:
На B'C' средняя подвижность
Таким
образом, в двухдолинных полупроводниках
N-образная
ВАХ связана с N-образным
характером зависимости средней дрейфовой
скорости
от Е.