
- •Часть 2
- •Глава 4. Логические элементы и устройства систем автоматики 7
- •Глава 5. Вычислительные средства обработки информации в системах автоматики 64
- •Глава 6. Исполнительные устройства и регулирующие органы систем автоматики 160
- •Глава 4. Логические элементы и устройства систем автоматики
- •4.1. Логические элементы
- •4.2. Функциональные узлы комбинационного типа
- •4.2.1. Шифраторы и дешифраторы
- •4.2.2. Мультиплексоры
- •4.2.3. Сумматоры
- •4.2.4. Цифровые компараторы
- •4.3. Функциональные узлы последовательностного типа
- •4.3.1. Асинхронные триггеры
- •4.3.2. Синхронные триггеры
- •4.3.3. Регистры параллельного действия
- •4.3.4. Регистры последовательного действия.
- •4.3.5. Счетчики
- •4.4. Схемотехника запоминающих устройств
- •4.4.1. Запоминающие устройства эвм
- •4.4.2. Запоминающие элементы статических озу
- •4.4.3. Оперативные запоминающие устройства динамического типа
- •4.4.4. Постоянные запоминающие устройства
- •4.4.5. Перепрограммируемые пзу, Flash-память
- •4.4.6. Построение модуля озу заданной емкости
- •4.5. Цифро-аналоговые и аналого-цифровые преобразователи
- •4.5.1. Цифро-аналоговые преобразователи
- •4.5.2. Аналого-цифровые преобразователи параллельного кодирования
- •4.5.3. Аналого-цифровые преобразователи последовательного кодирования
- •4.6. Программируемые логические матрицы и интегральные схемы
- •Глава 5. Вычислительные средства обработки информации в системах автоматики
- •5.1. Микропроцессоры в системах автоматизации текстильного производства
- •5.1.1. Архитектура микропроцессорных устройств
- •5.1.2. Классификация микропроцессоров
- •5.1.3. Взаимодействие микропроцессора с внешними устройствами
- •5.1.4. Структура типового микропроцессорного комплекта
- •5.1.5. Однокристальные микроконтроллеры
- •5.1.6. Программируемые логические контроллеры
- •5.2. Вычислительные машины и вычислительные системы асу тп текстильных производств
- •5.2.1. Эвм общего назначения
- •5.2.2. Специализированные эвм и вычислительные комплексы
- •5.2.3. Рабочие станции
- •5.3. Сетевые компоненты систем автоматики
- •5.3.1. Локальные управляющие вычислительные сети
- •5.3.2. Топологии локальных сетей
- •5.3.3. Сетевые среды
- •5.4. Промышленные интерфейсы и протоколы
- •5.4.1. Интерфейс стандарта rs-232
- •5.4.2. Интерфейсы стандартов eia rs‑422a/rs-485
- •5.4.3. Интерфейс и протокол can
- •5.4.4. Шина usb
- •5.4.5. Протокол profibus
- •5.4.6. Протокол modbus
- •5.5. Программные средства автоматизации
- •5.5.1. Структура программного обеспечения
- •5.5.2. Системное программное обеспечение
- •5.5.3. Прикладное программное обеспечение
- •5.5.4. Инструментальные средства разработки, отладки и сопровождения программного обеспечения
- •5.5.5. Системы scаda
- •Глава 6. Исполнительные устройства и регулирующие органы систем автоматики
- •6.1. Электрические исполнительные механизмы
- •6.1.1. Электромагнитные исполнительные элементы
- •6.1.2. Электродвигательные исполнительные устройства
- •6.1.3. Двигатель постоянного тока как элемент исполнительных механизмов
- •6.1.4. Двухфазный асинхронный двигатель как элемент исполнительных механизмов
- •6.1.5. Трехфазный асинхронный двигатель как элемент исполнительных механизмов
- •6.1.6. Синхронный двигатель как элемент исполнительных механизмов
- •6.2. Автоматизированный электропривод
- •6.2.1. Асинхронные электроприводы со скалярным управлением
- •6.2.2. Асинхронные электроприводы с векторным управлением
- •6.2.3. Вентильные и бесконтактные машины постоянного тока
- •6.3. Силовые полупроводниковые преобразователи в системе автоматизированного электропривода
- •6.3.1. Управляемые выпрямители
- •6.3.2. Широтно-импульсные преобразователи
- •6.3.3. Автономные инверторы
- •6.3.4. Непосредственные преобразователи частоты
- •6.4. Пневматические исполнительные механизмы
- •6.5. Регулирующие органы. Классификация и области применения
- •Список литературы
6.2.3. Вентильные и бесконтактные машины постоянного тока
Бесконтактные машины постоянного тока (БМПТ) и вентильные машины (ВМ) – это синхронный двигатель в замкнутой системе (рис. 6.30), реализованной с использованием датчика положения ротора (ДПР), преобразователя координат (ПК) и силового полупроводникового преобразователя (СПП).
Разница между БМПТ и ВМ заключается только в способе формирования напряжения на выходе силового полупроводникового преобразователя. В первом случае формируется импульсное напряжение (ток) на обмотках машины. Во втором случае на выходе СПП формируется синусоидальное или квазисинусоидальное напряжение (ток).
Следует заметить, что БМПТ отличаются от шаговых машин тем, что включены в замкнутую систему формирования напряжения. В них напряжение формируется в зависимости от положения ротора, и это является их принципиальным отличием от шаговых, в которых положение ротора зависит от числа управляющих импульсов.
Рис. 6.30. Функциональная схема БМПТ и ВМ
Особняком в ряду синхронных машин стоят гистерезисные и реактивные двигатели. Эти машины редко используются в электроприводе.
Из всех рассмотренных типов синхронных машин в управляемых системах наиболее перспективными считаются вентильные машины.
В ряде применений, например, для приводов с вентильно-индукторными и бесколлекторными двигателями постоянного тока, вполне достаточно на интервале коммутации поддерживать в обмотке двигателя заданный фиксированный уровень тока. Структура системы управления при этом заметно упрощается. Особенность схемы (рис. 6.31) состоит в том, что ШИМ‑генератор обеспечивает сразу две функции: автокоммутацию фаз двигателя по сигналам датчика положения и поддержание тока на заданном уровне путем регулирования приложенного к обмоткам двигателя напряжения.
Первая функция может быть реализована автоматически, если генератор имеет встроенный блок управления выходами, допускающий прием команд от процессора событий. Вторая функция традиционна и реализуется путем изменения скважности выходных ШИМ-сигналов. Для оценки положения ротора двигателя можно использовать либо датчик положения на элементах Холла, либо более дорогой импульсный датчик положения. В первом случае сигналы с датчика положения вводятся в микроконтроллер на входы модулей захвата процессора событий.
Отработка двигателем каждого целого шага идентифицируется процессором событий и вызывает автокоммутацию ключей инвертора. Прерывание, возникающее при каждом захвате фронта сигнала с датчика, используется для оценки времени между двумя соседними переключениями и, далее, – скорости привода. Во втором случае можно получить более точную информацию о текущем положении ротора двигателя и о его скорости, что может потребоваться в приводах с интеллигентным управлением углом коммутации в функции скорости. Таким образом, полноценные системы векторного управления приводами переменного тока требуют для своей реализации высокопроизводительных микроконтроллеров с широким набором перечисленных выше встроенных периферийных устройств, допускающих совместную работу и требующих от центрального процессора минимальных ресурсов на свое обслуживание.
Рис. 6.31. Блок-схема системы управления бесколлекторным двигателем постоянного тока