- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
5. Медиана и мода
Наряду со средними величинами в качестве описательных характеристик вариационного ряда применяют медиану и моду.
Медианой
(
)
называют значение признака, приходящееся
на середину ранжированного ряда
наблюдений.
Пусть
проведено нечётное число наблюдений,
т.е. n=2q—1,
и результаты наблюдений проранжированы
и выписаны в следующий ряд:
Здесь
—
значение признака, занявшее i-e
порядковое
место в ранжированном ряду. На середину
ряда приходится значение
Следовательно,
=
Если
проведено чётное число наблюдений, т.е.
п=2q,
то на середину
ранжированного ряда
приходятся значения
и
.
В этом случае за медиану принимают
среднюю арифметическую значений
и
,
т.е.
Покажем на примерах на практическом занятии, как определяется медиана дискретного и интервального вариационных рядов.
В общем случае медиана для интервального вариационного ряда определяется по формуле
(9)
или по следующей формуле, полученной из формулы (9) в результате деления числителя и знаменателя входящей в неё дроби на п:
,
(10)
где
ае
— начало медианного интервала, т.е.
такого, которому соответствует первая
из накопленных частот (накопленных
частостей), равная или большая половине
всех наблюдений (≥0,5);
(
)
—частота (частость), накопленная к
началу медианного интервала;
(we)—частота
(частость) медианного интервала.
Модой
(
)
называют такое значение признака,
которое наблюдалось наибольшее число
раз. Нахождение моды для дискретного
вариационного ряда не требует каких-либо
вычислений, так как ею является вариант,
которому соответствует наибольшая
частота.
В случае интервального вариационного ряда мода вычисляется по следующей формуле (вывод формулы можно найти в кн.: Венецкий И. Г., Кильдишев Г. С. Теория вероятностей и математическая статистика. М., 1975.):
(11)
или по тождественной формуле:
(12)
где
— начало
модального интервала, т.е. такого,
которому соответствует наибольшая
частота (частость);
(w0)
— частота
(частость) модального интервала;
) — частота (частость) интервала,
предшествующего модальному;
(w"0)
— частота
(частость) интервала, следующего за
модальным.
Моду используют в случаях, когда нужно ответить на вопрос, какой товар имеет наибольший спрос, каковы преобладающие в данный момент уровни производительности труда, себестоимости и т. д. Модальная производительность, себестоимость и т.д. помогают вскрыть ресурсы, имеющиеся в экономике.
6. Показатели вариации
Средние величины, характеризуя вариационный ряд числом, не отражают изменчивости наблюдавшихся значений признака, т.е. вариацию. Простейшим показателем вариации является вариационный размах (RB), равный разности между наибольшим и наименьшим вариантами, т.е.
(13)
Вариационный размах — приближённый показатель вариации, так как почти не зависит от изменения вариантов, а крайние варианты, которые используются для его вычисления, как правило, ненадёжны.
Более содержательными являются меры рассеяния наблюдений вокруг средних величин. Средняя арифметическая является основным видом средних, поэтому ограничимся рассмотрением мер рассеяния наблюдений вокруг средней арифметической.
Сумма
отклонений результатов наблюдений
от средней
арифметической
,
т.е.
не
может характеризовать вариацию наблюдений
около средней арифметической. В силу
свойства 1°
эта сумма равна нулю. Берут или абсолютные
величины, или квадраты разностей
В результате получают различные
показатели вариации.
Средним линейным отклонением (d) называют среднюю арифметическую абсолютных величин отклонений результатов наблюдений от их средней арифметической:
(14)
Эмпирической дисперсией (s2) называют среднюю арифметическую квадратов отклонений результатов наблюдений от их средней арифметической:
(15)
Если по результатам наблюдений построен вариационный ряд, то эмпирическая дисперсия
(16)
Вместо эмпирической дисперсии в качестве меры рассеяния наблюдений вокруг средней арифметической часто используют эмпирическое среднеквадратическое отклонение, равное арифметическому значению корня квадратного из дисперсии и имеющее ту же размерность, что и значения признака.
Для вариационного ряда среднеквадратическое отклонение
(17)
где х — вариант (если ряд дискретный) и центр интервала (если ряд интервальный); mx(wx) — соответствующая частота (частость); — средняя арифметическая.
Для краткости величину s2 часто будем называть просто дисперсией, не употребляя термина «эмпирическая». Однако при этом всегда следует помнить, что в этом случае дисперсия вычислена по результатам наблюдений на основании опытных данных, т.е. является эмпирической. Аналогичное замечание относится и к величине s.
Приведем свойство минимальности эмпирической дисперсии: s2 меньше взвешенной средней арифметической квадратов отклонений вариантов от любой постоянной величины, отличной от средней арифметической, т.е.
если
Доказательство.
Найдём экстремум функции f(a)=
.
Для этого решим
уравнение f'(a)
=0. Имеем:
Так
как
то
функция f(a)
имеет в точке
а=
минимум.
Можно показать, что среднее линейное отклонение не обладает свойством минимальности. Поэтому наиболее употребительными мерами рассеяния наблюдений вокруг средней арифметической являются эмпирическая дисперсия и эмпирическое среднеквадратическое отклонение.
Итальянский
статистик Коррадо Джинни предложил в
качестве показателя вариации использовать
величину
где
- ряд наблюдений. Особенность этого
показателя состоит в том, что он зависит
только от разностей между наблюдениями
и измеряет как бы «внутреннюю изменчивость»
значений признака, а не их рассеяние
вокруг какой-либо точки. Можно показать,
что
,
т. е. s2,
являясь мерой
рассеяния значений признака вокруг
средней арифметической, характеризует
также и внутреннюю их изменчивость.
