- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
1.1. Статистическое описание результатов наблюдений
При изучении качественного или количественного признака, характеризующего совокупность однородных объектов, не всегда имеется возможность обследовать каждый объект изучаемой совокупности. Приведём такой пример. Электрическую лампочку условимся считать стандартной, если продолжительность её горения не менее 1200 ч, в противном случае она считается нестандартной. За качеством продукции обязан следить завод-изготовитель. Исследовать каждую лампочку на продолжительность горения практически невозможно, да это и противоречит здравому смыслу. Как же получить представление о качестве изготовляемой продукции? Пусть заводу необходимо поставить потребителю партию готовых изделий. Вместо данных о качестве всех электрических лампочек партии достаточно получить точные сведения о качестве небольшой их части, отобранных случайно. По продолжительности горения отобранных лампочек можно судить о качестве всех лампочек партии. Практика подтверждает, что сделанные выводы бывают достаточно надёжными.
Совокупность всех возможных, иногда говорят, – всех мыслимых, значений исследуемой случайной величины называют генеральной совокупностью.
Множество значений случайной величины, полученное в результате наблюдений над нею, называют случайной выборкой или просто выборкой.
Число объектов в генеральной совокупности и в выборке называют их объёмами. Генеральная совокупность может иметь как конечный, так и бесконечный объём.
Рассмотрим наблюдение за некоторым измеряемым признаком какого либо объекта, например, возраст людей, сортность изделий и др.
Значение признака генеральной совокупности – это: случайная величина X, связанная с испытанием (наблюдением). Эта случайная величина распределена по некоторому закону с неизвестными параметрами, который называется распределением генеральной совокупности.
Проведём
п
испытаний при одних и тех же условиях.
Случайная величина X
принимает значения
.
Это множество значений называется выборкой объёма п.
Элементы выборки, записанные в порядке их регистрации, труднообозримы и неудобны для дальнейшего анализа. Необходимо получить такое описание выборки, которое позволяет выделить характерные особенности исходных данных, Для этого существуют различные способы группировки данных выборки.
Пусть
выборка объёма n
содержит m
различных чисел. Изменив нумерацию,
запишем их в виде
,
причём
.
Число
т
называется размахом
выборки.
Пусть
значение
встречается
в выборке
раз,
.
Число
называется абсолютной
частотой, а
число
- относительной
частотой
элемента
.
Таблица
Х |
|
|
… |
|
|
|
|
|
… |
|
|
называется статистическим рядом.
При
большом объёме выборки используется
группированный
статистический ряд.
Для этого
все
элементы выборки распределяются по
группам или интервалам группировки.
Интервал, содержащий все элементы
выборки, разбивается на k
непересекающихся интервалов
,
не обязательно равных по длине.
Если
- число элементов
выборки, попавших в интервал
,
а
их частота, то можно составить таблицу
Номер |
Границы |
Частоты |
Относительные |
интервала |
интервала |
|
частоты |
1 |
|
|
|
2 … |
… |
… |
… |
k |
|
|
|
Эта таблица называется группированным статистическим рядом. Если наблюдаемое значение попадает на границу соседних интервалов, то число его наблюдений относят к правому интервалу.
По
данным выборки можно построить
статистическую функцию распределения
.
Для наглядного представления выборки используют гистограмму и полигон частот.
Гистограмма относительных частот строится по группированному
статистическому
ряду. Для этого находится
(статистическая плотность)
.
Гистограмма
- это ступенчатая фигура, состоящая из
прямоугольников с основаниями
и высотами
(рис. 1).
При
увеличении объёма выборки и уменьшении
интервала группировки гистограмма
относительных частот является
статистическим аналогом плотности
распределения
генеральной совокупности.
Полигон
относительных частот
- это ломаная линия с вершинами
,
взятыми из статистического ряда (рис.
2).
Заключение по лекции:
В лекции мы рассмотрели генеральную и выборочную совокупности. В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.
Задание на самостоятельную работу
Изучить:
1. Иванова В.М., Калинина В.Н., Нешумова Л.А., Решетникова И.О. Математическая статистика. 2-е изд., перераб. и доп. – М.: Высш. школа, 1981. – 371 с., ил. стр 191-200.
Лекция 15 Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
Учебные и воспитательные цели:
1. Дать представление об интервальных оценках параметров распределения генеральной и выборочной совокупности.
Вид занятия: лекция.
Продолжительность занятия: 90 минут.
Учебно-материальное обеспечение занятия:
Медиа-проектор, ноутбук, слайды Power Point (Оверхэд-проектор, слайды).
Литература:
а) основная:
1. Иванова В.М., Калинина В.Н., Нешумова Л.А., Решетникова И.О. Математическая статистика. 2-е изд., перераб. и доп. – М.: Высш. школа, 1981. – 371 с., ил.
Структура занятия и расчёт времени
Структура занятия |
Время, мин |
I. Вводная часть занятия |
5 |
II. Основная часть занятия |
80 |
Введение в лекцию |
5-10 |
1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков |
60 |
Заключение по лекции |
5 |
III. Заключительная часть занятия |
5 |
