
- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
1. Предмет и задачи теории вероятностей
Любому закономерному явлению присущи какие-то случайные отклонения, которые определяются второстепенными факторами, изменяющимися от опыта к опыту, что, соответственно, и вносит случайные различия получаемых результатов. И, тем не менее, при решении ряда практических задач этими случайными факторами можно пренебречь и рассматривать вместо реального явления его упрощённую «модель». В этом случае из бесчисленного множества факторов, оказывающих влияние на его исход, выделяют основные условия опыта, которые сохраняются неизменными, и которые определяют в общих и грубых чертах его протекание. Такая схема изучения явлений применяется в «точных науках» (физике, механике и т.д).
Однако для решения ряда вопросов классическая схема исследования закономерных явлений «точными» науками, которая предполагает выявление основной закономерности путём выделения основных условий, определения их параметров и построение математических моделей исследуемого явления, не всегда приемлема. Существуют такие задачи, где интересующий нас исход опыта зависит от очень большого числа условий, когда учесть все факторы становится практически невозможным, а полученный результат будет зависеть от взаимного их случайного переплетения.
Примером такого случайного явления может служить рассеивание снарядов при стрельбе, которое зависит от таких факторов как направление и сила ветра, атмосферное давление, температура воздуха и заряда, масса снаряда, химический состав пороха и других условий.
Приведенный пример позволяет сделать вывод, что случайные вариации результатов опыта всегда связаны с наличием каких-то второстепенных факторов, влияющих на его исход, но не заданных в числе его основных условий. Эти второстепенные условия опыта и вносят случайные различия в полученный результат.
Вернёмся к рассеиванию снарядов при стрельбе.
а б в
Рисунок 1. Рассеивание снарядов при стрельбе
Если в результате небольшой группы выстрелов наблюдается хаотичность расположения точек падения (рис. 1а), то при наличии нескольких десятков выстрелов беспорядочное распределение точек падения снарядов на площади начинает приобретать некоторую закономерность – точки падения группируются около некоторого воображаемого центра – центра рассеивания снарядов, причём, чем ближе к центру, тем гуще и кучнее они располагаются (рис. 1б). С ещё большим увеличением выстрелов наблюдается то, что точки разрывов снарядов по обе стороны от любой прямой, проведенной через центр рассеивания, располагается поровну на некотором удалении от центра рассеивания (рис.1в).
Наблюдая массу однородных случайных событий (а в данном примере – точек падения снарядов при стрельбе из орудия в аналогичных условиях) можно выявить определенную закономерность – рассеивание снарядов симметрично и небеспредельно т.е. ограниченно.
Подобные так называемые «статистические» закономерности наблюдаются всегда, когда мы имеем дело со случайными явлениями массового характера, которые оказываются независимыми от индивидуальных особенностей отдельных случайных явлений, входящих в эту массу.
Таким образом, определённые закономерности в наступлении случайных событий обнаруживаются лишь при проведении достаточно большого числа испытаний, т.е. при многократной реализации одного и того же комплекса условий.
Очевидно, что должна существовать принципиальная разница в методах учёта основных, решающих факторов, определяющих в главных чертах течение явления, и вторичных, второстепенных факторов, влияющих на его исход. Элемент неопределенности, многопричинности, присущий случайным явлениям, потребовал и создания специальных методов для изучения такого явления. Многократно подтверждённая опытом устойчивость массовых случайных явлений служит базой для применения вероятностных «статистических» методов исследования. Поэтому методы теории вероятностей по своей природе приспособлены только для исследований массовых случайных явлений; они не дают возможности предсказать исход отдельного случайного явления, но дают возможность предсказать средний суммарный результат массы однородных случайных явлений, предсказать средний исход массы аналогичных опытов, конкретный исход каждого из которых останется неопределённым, случайным.
Во всех случаях, когда применяются вероятностные методы исследования их цель в том, чтобы, минуя слишком сложное, а иногда и невозможное изучение отдельного явления, обусловленное большим количеством факторов, осуществить научный прогноз на основании законов, управляющих массами случайных явлений.
Вероятностный или «статистический» метод в науке не противопоставляет себя классическому, обычному методу «точных» наук, а является его дополнением, позволяющим глубже анализировать явление с учётом присущих ему элементов случайности.
В заключении первого вопроса дадим определение теории вероятностей.
Теория вероятностей – это математическая наука, изучающая закономерности в случайных явлениях массового характера. Она отражает в абстрактной форме закономерности, присущие случайным явлениям (событиям) массового характера, т.е. таким явлениям (событиям), которые в повседневной жизни повторяются неограниченно большое число раз. Единичные случайные явления (события) теорией вероятностей не рассматриваются.
Для изучения закономерностей, которым подчиняются случайные явления (события), теория вероятностей применяет вероятностные методы исследования, которые столь же точны и строги, как и методы других «точных» наук.