- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
1. Понятие о числовых характеристиках случайной величины
На прошлой лекции мы рассмотрели, что закон распределения дискретной случайной величины может быть задан одним из следующих способов: формулой, с помощью которой можно вычислить вероятность всех возможных значений случайной величины; рядом распределения; функцией распределения.
Закон распределения непрерывной случайной величины может быть задан: формулой, с помощью которой можно вычислить вероятность попадания случайной величины в заданный интервал; функцией распределения; функцией плотности распределения.
Однако для ряда непрерывных случайных величин определение закона распределения затруднительно. При этом о каждой случайной величине необходимо, прежде всего, знать ее некоторое среднее значение, вокруг которого группируются возможные частные значения случайной величины, наблюдаемые на опыте. Другими словами, необходимо знать, где находится так называемый «центр рассеивания» случайной величины.
Не менее важным при решении практических задач является знание того, насколько велик наблюдаемый на опыте разброс возможных частных значений случайной величины относительно ее среднего значения или центра рассеивания.
Числовые характеристики, с помощью которых оценивается положение центра рассеивания случайной величины, носят название числовых характеристик положения.
Числовые характеристики, показывающие, насколько тесно сгруппированы возможные частные значения случайной величины около центра рассеивания, носят название числовых характеристик рассеивания.
Кроме указанных числовых характеристик для более полного описания случайной величины могут использоваться и ряд других числовых характеристик, предназначенных для уяснения характерных черт распределения случайной величины.
В теории вероятностей для характеристики случайной величины вводится понятие моментов. Однако, на настоящий момент изучения данной дисциплины мы ограничимся лишь понятием математического ожидания и дисперсии, а понятие «моментов» введём при изучении Темы 11 при рассмотрении системы нескольких случайных величин.
2. Числовые характеристики положения: математическое ожидание и его основные свойства
Математическое ожидание случайной величины является основной характеристикой, указывающей положение центра рассеивания случайной величины или иначе среднее ориентированное значение случайной величины, около которого группируются все возможные частные значения случайной величины.
Со средним значением случайной величины мы часто имеем дело в повседневной.
Рассмотрим дискретную случайную величину Х, имеющую возможные значения х1, х2…хn, с соответствующими вероятностями p1, p2,…pn. Требуется каким-то числом охарактеризовать среднее значение случайной величины при условии того, что все эти значения имеют различные вероятности.
Для решения этой задачи воспользуемся так называемым «средним взвешенным» из значений хi, причём каждое значение хi будем учитывать с «весом», пропорциональным вероятности этого значения.
Учитывая,
что мы имеем дело с полной группой
несовместных событий (
),
получим:
Таким образом, мы получили «среднее взвешенное» значение случайной величины Х из значений х1, х2…хn, с учётом «веса» пропорционального вероятности этих значений.
Это
«среднее взвешенное» значение и является
математическим ожиданием (средним
значением) случайной величины Х
(обозначается
или
).
Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на вероятность этих значений.
Для непрерывной случайной величины Х математическое ожидание будет выражается уже не суммой, а интегралом вида:
,
где: |
f(x) |
– |
плотность распределения случайной величины Х. |
|
f(x)dx |
– |
элемент вероятности – вероятность попадания непрерывной случайной величины Х на элементарный участок dх, прилежащий к точке Х. |
Рассмотрим некоторые важные свойства математического ожидания случайной величины.
1. Математическое ожидание постоянной величины с равно самой постоянной:
М[с] = с
2. При прибавлении к случайной величине Х постоянной величины с к её математическому ожиданию прибавляется та же величина:
3. Постоянную величину с можно выносить за знак математического ожидания
М[сХ] = сМ[Х]
Математическое ожидание имеет размерность случайной величины и может быть целое, дробное, положительное и отрицательное.
Кроме математического ожидания в качестве характеристик положения используются также мода – М, и медиана – Ме случайной величины.
