- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
Литература:
а) основная:
Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. – 575 с.
Вентцель Е.С., Овчаров Л.А.. Теория вероятностей и её инженерные приложения. Учебное пособие. Издание третье, переработанное и дополненное. – М.: «Академия», 2003 г. – 464 с.
Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. - М.: Высшая школа», 2004 г. – 480 с.
Структура занятия и расчёт времени
Структура занятия |
Время, мин |
I. Вводная часть занятия |
5 |
II. Основная часть занятия |
80 |
Введение в лекцию |
5-10 |
1. Введение. Предмет и задачи теории вероятностей |
10-15 |
2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий |
30-35 |
3. Частота и вероятность события. Способы определения вероятности |
20-25 |
Заключение по лекции |
5 |
III. Заключительная часть занятия |
5 |
Текст лекции
Введение в лекцию:
Сочетание слов «теория вероятностей» для неискушённого человека производит несколько странное впечатление. В самом деле, слово «теория» связывается с наукой, а наука изучает закономерные явления; а слово «вероятность» в обычном языке связывается с чем-то неопределённым, случайным, незакономерным и, казалось бы, не поддающемуся никакому научному предсказанию.
Зарождение теории вероятностей, как науки, связано с определенными потребностями человеческого общества.
Пожалуй, первый толчок к развитию теории вероятностей как науки, возможно объяснить потребностями зарождающегося буржуазного общества в XVI÷XVII веках и связан он с возникновением потребностей страхования.
К этому времени относятся первые попытки создания общей теории страхования, основанной на анализе закономерностей в таких массовых случайных явлениях, как заболеваемость, смертность, статистика несчастных случаев и т.д.
Однако определение закономерностей теории вероятностей на обработке такого рода статистической информации было затруднено: законы управления массой случайных явлений прослеживались недостаточно отчётливо.
Наиболее простым материалом для изучения законов зарождавшейся науки явились азартные игры.
Игры давали весьма простой и наглядный материал для выработки и установления таких основных понятий, как вероятность и средне ожидаемый результат из опыта. Примеры из области игр широко применяются при изучении теории вероятностей как исключительно по простоте и прозрачности модели случайных явлений.
Работы Паскаля, Ферма, Гюйгенса в области теории азартных игр явились основой и началом теории вероятностей, как науки.
Паскаль и Ферма понимали, что на основе решения ряда частных задач из области игр вырисовывается некоторая новая область математики со своеобразным содержанием и методом исследования.
Дальнейшее развитие теории вероятностей связано со становлением, развитием и обобщением так называемого закона больших чисел. Так, швейцарский математик Якоб Бернулли во второй половине XVII в. впервые показал, что с увеличением числа испытаний частота (частность) какого-либо случайного события приобретает свойство устойчивости и определенным образом приближается к некоторому безразмерному числу, объективно отражающего возможность появления случайного события.
В начале XVIII века английский математик французского происхождения Абрахам де Муавр впервые рассмотрел простейший случай нормального закона, который в настоящее время нашёл широкое применение для решения многих научных и практических задач.
Большое значение в развитии теории вероятностей в первой половине XIX века имели работы Лапласа, Гаусса, Пуассона, которые продолжили исследования нормального закона, закона больших чисел и разработку вопросов приложения теории вероятностей к исследованию результатов наблюдений (в частности, астрономических).
Бурное развитие в России теория вероятностей получила в XIX веке с созданием Петербургской математической школы, представителями которой стали Пафнутий Львович Чебышев и его ученики Андрей Андреевич Марков и Александр Михайлович Ляпунов. П.Л. Чебышев и его ученики последовательно работали над расширением и обобщением закона больших чисел. П.Л. Чебышев ввёл в теорию вероятностей понятие случайной величины и метод моментов, что привело к созданию аппарата теории вероятностей. А.А. Марков положил основу новой области теории вероятностей – теории случайных процессов. А.М. Ляпунов известен своим доказательством так называемой центральной предельной теоремы и разработкой метода характеристических функций.
В настоящее время теория вероятностей широко применяется при решении многих вопросов научной и практической деятельности. Среди учёных – виднейших математиков нашей страны, занимавшихся разработкой вопросов теории вероятностей, стоит отметить Сергея Натановича Бернштейна, Александра Яковлевича Хинчина, Андрея Николаевича Колмогорова, Всеволода Ивановича Романовского, Бориса Владимировича Гнеденко.
Учебные вопросы лекции:
