Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по ТВиМС.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
4.92 Mб
Скачать

Литература:

а) основная:

  1. Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. – 575 с.

  2. Вентцель Е.С., Овчаров Л.А.. Теория вероятностей и её инженерные приложения. Учебное пособие. Издание третье, переработанное и дополненное. – М.: «Академия», 2003 г. – 464 с.

  3. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. - М.: Высшая школа», 2004 г. – 480 с.

Структура занятия и расчёт времени

Структура занятия

Время, мин

I. Вводная часть занятия

5

II. Основная часть занятия

80

Введение в лекцию

5-10

1. Введение. Предмет и задачи теории вероятностей

10-15

2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий

30-35

3. Частота и вероятность события. Способы определения вероятности

20-25

Заключение по лекции

5

III. Заключительная часть занятия

5

Текст лекции

Введение в лекцию:

Сочетание слов «теория вероятностей» для неискушённого человека производит несколько странное впечатление. В самом деле, слово «теория» связывается с наукой, а наука изучает закономерные явления; а слово «вероятность» в обычном языке связывается с чем-то неопределённым, случайным, незакономерным и, казалось бы, не поддающемуся никакому научному предсказанию.

Зарождение теории вероятностей, как науки, связано с определенными потребностями человеческого общества.

Пожалуй, первый толчок к развитию теории вероятностей как науки, возможно объяснить потребностями зарождающегося буржуазного общества в XVI÷XVII веках и связан он с возникновением потребностей страхования.

К этому времени относятся первые попытки создания общей теории страхования, основанной на анализе закономерностей в таких массовых случайных явлениях, как заболеваемость, смертность, статистика несчастных случаев и т.д.

Однако определение закономерностей теории вероятностей на обработке такого рода статистической информации было затруднено: законы управления массой случайных явлений прослеживались недостаточно отчётливо.

Наиболее простым материалом для изучения законов зарождавшейся науки явились азартные игры.

Игры давали весьма простой и наглядный материал для выработки и установления таких основных понятий, как вероятность и средне ожидаемый результат из опыта. Примеры из области игр широко применяются при изучении теории вероятностей как исключительно по простоте и прозрачности модели случайных явлений.

Работы Паскаля, Ферма, Гюйгенса в области теории азартных игр явились основой и началом теории вероятностей, как науки.

Паскаль и Ферма понимали, что на основе решения ряда частных задач из области игр вырисовывается некоторая новая область математики со своеобразным содержанием и методом исследования.

Дальнейшее развитие теории вероятностей связано со становлением, развитием и обобщением так называемого закона больших чисел. Так, швейцарский математик Якоб Бернулли во второй половине XVII в. впервые показал, что с увеличением числа испытаний частота (частность) какого-либо случайного события приобретает свойство устойчивости и определенным образом приближается к некоторому безразмерному числу, объективно отражающего возможность появления случайного события.

В начале XVIII века английский математик французского происхождения Абрахам де Муавр впервые рассмотрел простейший случай нормального закона, который в настоящее время нашёл широкое применение для решения многих научных и практических задач.

Большое значение в развитии теории вероятностей в первой половине XIX века имели работы Лапласа, Гаусса, Пуассона, которые продолжили исследования нормального закона, закона больших чисел и разработку вопросов приложения теории вероятностей к исследованию результатов наблюдений (в частности, астрономических).

Бурное развитие в России теория вероятностей получила в XIX веке с созданием Петербургской математической школы, представителями которой стали Пафнутий Львович Чебышев и его ученики Андрей Андреевич Марков и Александр Михайлович Ляпунов. П.Л. Чебышев и его ученики последовательно работали над расширением и обобщением закона больших чисел. П.Л. Чебышев ввёл в теорию вероятностей понятие случайной величины и метод моментов, что привело к созданию аппарата теории вероятностей. А.А. Марков положил основу новой области теории вероятностей – теории случайных процессов. А.М. Ляпунов известен своим доказательством так называемой центральной предельной теоремы и разработкой метода характеристических функций.

В настоящее время теория вероятностей широко применяется при решении многих вопросов научной и практической деятельности. Среди учёных – виднейших математиков нашей страны, занимавшихся разработкой вопросов теории вероятностей, стоит отметить Сергея Натановича Бернштейна, Александра Яковлевича Хинчина, Андрея Николаевича Колмогорова, Всеволода Ивановича Романовского, Бориса Владимировича Гнеденко.

Учебные вопросы лекции: