- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
Задание на самостоятельную работу
Изучить:
Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. – 575 с. – стр. 103÷120.
Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения. Учебное пособие. Издание третье, переработанное и дополненное. – М.: «Академия», 2003 г. – 464 с. – стр. 117÷132, 139÷149.
Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. – М.: Высшая школа», 2004 г. – 480 с. – стр.64÷73.
Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
Учебные и воспитательные цели:
1. Изучить методику определения вероятности попадания случайной величины на интервал с использованием приведенной табличной функции распределения, приведенной табличной функции плотности распределения, приведенной табличной функции Лапласа.
Вид занятия: лекция.
Продолжительность занятия: 90 минут.
Учебно-материальное обеспечение занятия:
Медиа-проектор, ноутбук, слайды Power Point (Оверхэд-проектор, слайды).
Литература:
а) основная:
1. Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. - 575 с.
2. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. – М.: Высшая школа», 2004 г. – 480 с.
Структура занятия и расчёт времени
Структура занятия |
Время, мин |
I. Вводная часть занятия |
15 |
II. Основная часть занятия |
70 |
1. Определение вероятности попадания случайной величины на интервал с использованием приведенной табличной функции распределения, приведенной табличной функции плотности распределения, приведенной табличной функции Лапласа |
70 |
III. Заключительная часть занятия |
5 |
Текст лекции
1. Определение вероятности попадания случайной величины на интервал с использованием приведенной табличной функции распределения, приведенной табличной функции плотности распределения, приведенной табличной функции Лапласа
Перед изложением материала лекции преподаватель обозначает проблему (невозможность определения вероятности попадания случайной величины имеющей нормальное распределение на интервал известными ранее методами) и пути её решения.
После чего преподаватель доводит условие примера, на котором будут показаны методы решения задачи по определению искомой вероятности.
Далее преподаватель последовательно решает задачу различными методами. При этом очень кратко останавливаясь на его содержании, доводит расчётную формулу и методику её решения.
Для более глубокого понимания сущности решаемой задачи и исходных данных, для каждого метода решения преподаватель изменяет начало отсчёта.
В общем виде вероятность попадания случайной величины на интервал (х1; х2) определится как:
Однако данный интеграл не выражается через элементарные функции и для решения задачи вычисления вероятности вводят специальные табличные функции.
При
этом исходят из условия, что центрированная
случайная величина
должна быть выражена в числовых
характеристиках рассеивания: либо х
либо Ех. В этом случае параметры нормально
распределенной случайной величины
будут равны mx
= 0; х
=
1 или Ex
= 1 (в зависимости от того, какую используют
характеристику рассеивания х,
или Ех). Для таких функций заранее
составляют таблицы.
Методику решения задач по определению вероятности попадания нормально распределенной случайной величины на заданный интервал с использованием различных функций покажем на следующем примере.
Пример 1: Определить вероятность попадания при одном выстреле в полосу, глубиной 10 м, расположенную перпендикулярно направлению стрельбы, если центр рассеивания снарядов находится в 10 м дальше центра полосы. Срединное отклонение рассеивания снарядов по дальности равно 15 м (Вд=15) (рисунок 1)
ЦЦ
ЦРС
С
10
м
Направление
стрельбы
10
м
Рисунок 1
Решение:
Обозначим случайную величину Х = {удаление точки падения снарядов от центра рассеивания снарядов (ЦРС)}.
Выберем
за начало координат точку С, совпадающую
с центром рассеивания снарядов, тогда
математическое ожидание случайной
величины равно 0 (
),
а удаление границ интервала, в котором
необходимо определить вероятность
попадания случайной величины Х, будет
равно
,
.
Таким образом, задача определения вероятности попадания снаряда в полосу глубиной, равную 10 м, сводится к определению вероятности попадания случайной величины Х на интервал от -15 до -5, т.е. (Р(-15 Х -5)) (рисунок 2).
-
15
-
5
0
х
х1
х2
mx
Рисунок 2
