
- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
3. Формула Бернулли
Перед изложением третьего вопроса лекции преподаватель обозначает проблему, вызывающую необходимость рассмотрения теоремы о повторении опытов, при этом отмечая, что в изучаемом курсе теории вероятностей будет рассматриваться только частная теорема, связанная с повторением независимых опытов, в каждом из которых событие А появляется с постоянной вероятностью.
После чего преподаватель показывает доказательство этой теоремы (вывод формулы Бернулли).
Для пояснения физической сущности рассматриваемой теоремы преподаватель использует оверхэд-проектор и подготовленные слайды.
В заключении лекции преподаватель поясняет почему распределение вероятностей появления события А в серии из n испытаний, в условиях когда они несовместны и образуют полную группу событий называют биномиальным и обращает внимание на важность знания этого распределения для решения прикладных задач.
До сих пор мы рассматривали комбинации сравнительного небольшого числа событий, когда непосредственное применение правил сложения и умножения вероятностей не вызывало больших вычислительных затруднений. Однако с увеличением числа событий или числа испытаний, в которых может появляться интересующее нас событие, изученный способ вычисления становится очень громоздким.
При этом задача решалась достаточно просто только в том случае, если опыты являлись независимыми.
Несколько опытов называются независимыми, если вероятность того или иного исхода каждого из опытов не зависит от того, какие исходы имели другие опыты.
На практике имеют место случаи, когда вероятность наступления события А во всех независимых опытах может быть либо одинаковой, либо меняться от опыта к опыту. Например, при корректировании огня после каждого выстрела вероятность попадания в цель с каждым выстрелом будет изменяться.
В случае, когда в независимых опытах вероятность наступления события от опыта к опыту изменяется, используют общую теорему о повторении опытов, а когда в независимых опытах вероятность наступления события от опыта к опыту не изменяется, используют частную теорему о повторении опытов.
В изучаемом нами курсе теории вероятностей мы рассмотрим только частную терему о повторении опытов, когда необходимо определить вероятность наступления события А в серии из n независимых опытов, в каждом из которых событие А появляется с одинаковой вероятностью.
Например, необходимо вычислить вероятность того, что при пяти выстрелах из орудия на постоянных установках будет получено ровно два попадания в цель, если выстрелы независимы и при каждом выстреле вероятность попадания в цель известна и не изменяется.
В случае, если составить возможные комбинации появления интересующего нас события А1, то получим:
т.д.
Возможных комбинаций, в которых наступит событие А={получить 2 попадания при пяти выстрелах} будет 10.
Применив теорему о сумме и произведении независимых событий, будем иметь:
Увеличение числа интересующих нас событий или числа испытаний приведёт к еще большему увеличению объёма вычислительных операций, поэтому возникает задача отыскания менее трудоёмких способов расчёта.
Постановка задачи:
Пусть
предполагается в одинаковых условиях
произвести n
независимых испытаний, результатом
каждого из которых может быть наступление
либо события А,
либо ему противоположного
.
Обозначим через А1 наступление события А при первом испытании, А2 – при втором испытании, Аn – при последнем испытании.
В силу постоянства условий испытания:
Р(А1) = Р(А2) = … Р(Аn) = р
Р(
,
где: |
р = Р(А) |
– |
вероятность наступления события А в одном испытании; |
|
q
=
|
– |
вероятность наступления противоположного события в одном испытании. |
Нас интересует вероятность того, что событие А при n испытаниях наступит ровно m раз, а в оставшихся n-m испытаниях – не наступит (т.е. наступит противоположное событию А событие – ).
Допустим, что интересующее нас событие А наступает подряд m раз, начиная с первого, т.е. имеет место событие – Е.
Е
= А1А2
… Аm-1
Аm
(1)
m n-m
По
условию повторения испытаний, события,
входящие в данную комбинацию, независимы,
при этом вероятности наступления событий
А1
,
А2
,… Аm-1,
Аm
одинаковы и равны р:
Р(А1)
= Р(А2)
=…= Р(Аm)
= р,
а вероятности не наступления событий
так же одинаковы и равны q=1-р:
.
Применяя правило умножения вероятностей для независимых событий к выражению 1 получим:
Р(Е)
= Р(А1)
Р(А2)
… Р(Аm-1)
Р(Аm)
Р(
= рm
(1-р)n-
m
=
рmqn-m
В силу постоянства условий испытаний мы допустили, что интересующее нас событие А наступает подряд m раз, начиная с первого. Но событие А в n испытаниях может наступить ровно m раз в различных последовательностях или комбинациях. При этом нам безразлично, в какой именно последовательности появляется событие А ровно m раз.
Число
таких комбинаций равно числу сочетаний
из n
элементов по m.
Так как эти комбинации событий (подобные комбинации Е) несовместны и нас не интересует последовательность наступления события А в испытании ровно m раз, то обозначив интересующую нас вероятность через Рm, получим:
Рm
=
рm
(1-р)n
- m
=
=
где
– число сочетаний из n
элементов по m.
Данная формула носит имя формулы Бернулли.
Формула Бернулли позволяет получить ответ на вопрос: какова вероятность того, что при повторении n независимых испытаний некоторое событие А наступает ровно m раз, если в каждом из этих испытаний вероятность наступления события А постоянна и равна Р(А) = р.
Приведенная формула Бернулли имеет исключительно важное значение в теории вероятностей по той причине, что она связана с повторением испытаний в одинаковых условиях, т.е. с такими условиями, в которых как раз и проявляются законы теории вероятностей.
Заключение по лекции:
В лекции мы рассмотрели принципиальные вопросы теории вероятностей применительно к случайным величинам, ввели основной понятийный аппарат, необходимый для дальнейшего изучения дисциплины: определение случайной величины, их классификацию; понятия закона распределения и его формы для различных типов случайной величины.
В ходе подготовки к последующим лекциям и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.
Кроме того, на последующих занятиях мы будем изучать теоремы и зависимости, позволяющие определить вероятность появления случайной величины требуемое число раз или на определенном интервале, например вероятность попадания в цель.