- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
Р исунок 1
Пример 2: Стрельба по цели ведётся до первого попадания. Число снарядов, необходимых для получения попадания в цель является случайным.
Случайная величина Y = {число снарядов, необходимых для получения одного попадания}.
Случайная величина Y = {число снарядов, необходимых для получения одного попадания} в результате опыта может принять следующие частные значения:
y1 = 1; y2 = 2; y3 = 3;…yk = k; yk+1 = k+1…
Возможные частные значения случайной величины Y = {число снарядов, необходимых для получения одного попадания} (рисунок 2) также как и в первом примере могут быть расположены на числовой оси в определенной последовательности изолированно, и могут быть определены до опыта.
Рисунок 2
Однако в отличие от случайной величины Х, возможных значений случайной величины Y бесконечно много (но при этом счётно, так как их можно пересчитать).
Пример 3: Производится несколько выстрелов из орудия. Отклонение точек падения снарядов от центра рассеивания снарядов случайно.
Случайная величина Х={удаление точки падения снаряда от центра рассеивания снарядов}.
Рассеивание снарядов неравномерно, симметрично и небеспредельно.
Таким образом, снаряд может упасть в любую точку интервала, ограниченного пределами технического рассеивания снарядов от -4В до +4В.
Следовательно, все числа из этого интервала будут возможными значениями случайной величины Х = {удаления точки падения снарядов от центра рассеивания снарядов (ЦРС)}.
Характерной особенностью данной случайной величины Х (рисунок 3) является то, что перечислить все ее частные значения (или все точки интервала числовой оси) не представляется возможным, т.к. их число бесконечно и несчетно. Для подобной случайной величины Х можно указать лишь границы, в которых она может появиться.
Р исунок 3
Из приведенных выше примеров мы видим, что случайные величины могут принимать как отдельные (счётные), имеющие конечное или бесконечное множество значений (примеры 1,2), так и непрерывно заполнять некоторый промежуток числовой оси (иметь несчётное множество возможных значений) (пример 3).
Исходя из этого, различают следующие типы случайных величин: дискретные (прерывные) и непрерывные.
Дискретная (прерывная) случайная величина – это такая случайная величина, которая в результате испытаний может принимать только отдельные изолированные значения.
Характерными особенностями дискретной случайной величины являются:
1. возможные значения дискретной случайной величины на числовой оси располагаются изолированно;
2. число возможных значений дискретной случайной величины может быть как конечно так и бесконечно, но оно всегда счётно;
3. возможные значения дискретной случайной величины могут быть перечислены заранее до опыта.
Непрерывная случайная величина – это такая случайная величина, которая в результате испытания может принимать любое значения из бесчисленного множества значений некоторого промежутка.
Характерными особенностями непрерывной случайной величины являются:
1. возможные значения непрерывной случайной величины непрерывно заполняют некоторый промежуток числовой оси;
2. возможные значения непрерывной случайной величины нельзя расположить в определенной последовательности (пересчитать), их бесчисленное множество;
3. возможные значения непрерывной случайной величины нельзя перечислить до опыта, возможно указать лишь границы промежутка, в которых она может появиться.
В результате опыта случайная величина может принимать то или иное частное значение. Очевидно, что знание возможных значений случайной величины х1, х 2, … хn ещё не позволяет полностью описать случайную величину X. Необходимо ответить на вопрос – как часто в результате повторения опыта в одних и тех же условиях следует ожидать появления тех или иных возможных значений случайной величины. Другими словами, какова вероятность появления различных частных значений случайной величины. Причём, для дискретных случайных величин имеется возможность установить ряд этих значений, а для непрерывных – промежутки этих значений.
Вернёмся к примеру 1. Так как несовместные события х1,=0, х2=1, х3=2, х4=3 образуют полную группу, то должно выполняться условие:
Очевидно,
что эта суммарная вероятность каким-то
образом распределена между отдельными
значениями случайной величины
.
С
вероятностной точки зрения дискретная
случайная величина Х будет полностью
описана в том случае, если мы в точности
укажем, какой вероятностью обладает
каждое из событий:
и
,
а для случайной непрерывной величины
вероятность того, что случайная величина
примет значение некоторого промежутка
числовой оси -
.
Таким образом, вводится новое, очень важное понятие теории вероятностей – закон распределения случайной величины.
Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными частными значениями случайной величины и соответствующими им вероятностями.
Про случайную величину в этом случае говорят, что она подчинена данному закону распределения.
Закон распределения является исчерпывающей вероятностной характеристикой случайной величины, полностью описывающий с вероятностной точки зрения поведение случайной величины.
