- •Казанский кооперативный институт (филиал)
- •Теория вероятностей и математическая статистика конспект лекций
- •Общие организационно-методические рекомендации преподавателю
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Предмет и задачи теории вероятностей
- •2. Основные понятия теории вероятностей. События и соотношения между ними. Классификация событий
- •3. Частота и вероятность события. Способы определения вероятности
- •Аксиомы теории вероятностей
- •Лекция 2 Основные формулы для вычисления вероятностей
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Основные формулы для вычисления вероятностей
- •6. (Рисунок 4).
- •7. (Рисунок 5).
- •Задание на самостоятельную работу
- •Лекция 3 Основные теоремы теории вероятностей: сложение, умножение, формула полной вероятности
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Правила сложения вероятностей
- •2. Правила умножения вероятностей
- •3. Формула полной вероятности
- •1. Формула Байеса, вероятность появления хотя бы одного события
- •Лекция 5 Основные законы распределения дискретных случайных величин. Формула Бернулли
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о случайной величине и законе её распределения
- •Р исунок 1
- •Р исунок 3
- •2. Формы закона распределения случайной величины: ряд распределения, функция распределения, функция плотности распределения
- •3. Формула Бернулли
- •Задание на самостоятельную работу
- •Лекция 6 Основные законы распределения дискретных случайных величин. Локальная теорема Муавра-Лапласа, формула Пуассона
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Локальная теорема Муавра-Лапласа
- •2. Распределение Пуассона
- •Задание на самостоятельную работу
- •Лекция 7 Основные законы распределения дискретных случайных величин. Интегральная теорема Лапласа
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1.1 Определение вероятности попадания случайной величины х с использованием приведенной табличной функции распределения
- •1.2 Определение вероятности попадания случайной величины на заданный интервал с использованием табличной функции плотности распределения
- •1.3 Определение вероятности попадания случайной величины на заданный интервал с использованием таблиц приведенной функции Лапласа
- •Текст лекции
- •1. Понятие случайной величины
- •2. Законы распределения дискретных случайных величин
- •Задание на самостоятельную работу
- •Лекция 9 Числовые характеристики: математическое ожидание, дисперсия, среднеквадратическое отклонение
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Понятие о числовых характеристиках случайной величины
- •2. Числовые характеристики положения: математическое ожидание и его основные свойства
- •3. Числовые характеристики рассеивания: дисперсия, среднеквадратическое отклонение. Основные свойства дисперсии
- •Задание на самостоятельную работу
- •Лекция 10 Непрерывные случайные величины: функция распределения случайной величины
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Функция распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Функция распределения непрерывной случайной величины
- •1.2. Свойства функции распределения
- •Задание на самостоятельную работу
- •Лекция 11 Плотность вероятности. Числовые характеристики. Моменты случайных величин
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Плотность распределения непрерывной случайной величины для определения вероятности попадания случайной величины на интервал
- •1.1. Плотность распределения
- •1.2. Свойства плотности распределения
- •2.5. Медиана
- •2.6. Начальный момент
- •2.7. Центральный момент
- •2.8. Коэффициент асимметрии
- •2.9. Эксцесс
- •Задание на самостоятельную работу
- •Лекция 12 Законы распределения непрерывных величин: нормальное, равномерное, показательное
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •1. Равномерное распределение
- •2. Показательное распределение
- •2.1. Функция надёжности
- •3. Нормальный закон распределения
- •3.1. Функция Лапласа
- •3.2. Правило трёх сигм
- •Задание на самостоятельную работу
- •Лекция 13 Понятие закона больших чисел
- •Литература:
- •Структура занятия и расчёт времени
- •Текст лекции
- •Закон больших чисел
- •1.1. Неравенство Чебышева
- •1.2. Теорема Чебышева
- •1.3. Теорема Бернулли
- •1.4. Теорема Пуассона
- •1.5. Предельные теоремы
- •1.6. Теорема Муавра – Лапласа
- •Текст лекции
- •1. Генеральная и выборочная совокупности
- •1.1. Статистическое описание результатов наблюдений
- •Текст лекции
- •1. Интервальные оценки параметров распределения. Непрерывное и дискретное распределения признаков
- •1.2. Интервальные оценки.
- •Текст лекции
- •1. Вариационные ряды
- •2. Построение интервального вариационного ряда
- •3. Графическое изображение вариационных рядов
- •4. Средние величины
- •5. Медиана и мода
- •6. Показатели вариации
- •7. Свойства эмпирической дисперсии
- •8. Эмпирические центральные и начальные моменты
- •9. Эмпирические асимметрия и эксцесс
- •Текст лекции
- •1. Доверительные вероятности, доверительные интервалы
- •Текст лекции
- •1. Корреляционный анализ
- •1.1. О связях функциональных и статистических
- •1.2. Определение формы связи. Понятие регрессии
- •1.3. Основные положения корреляционного анализа
- •1.4. Свойства коэффициента корреляции
- •1.5. Поле корреляции. Вычисление оценок параметров двумерной модели
- •1.6. Проверка гипотезы о значимости коэффициента корреляции
- •1.7. Корреляционное отношение
- •1.8. Понятие о многомерном корреляционном анализе
- •1.9. Ранговая корреляция
- •2. Регрессионный анализ
- •2.1. Основные положения регрессионного анализа
- •2.2. Линейная регрессия
- •2.3. Нелинейная регрессия
- •2.4. Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
- •2.5. Интервальная оценка для условного математического ожидания
- •2.6. Проверка значимости уравнения регрессии
- •2.7. Многомерный регрессионный анализ
- •2.8. Факторный анализ
- •Приложения
- •Функция Лапласа
- •Задание на самостоятельную работу
3. Формула полной вероятности
При изложении третьего вопроса лекции преподаватель на примере поражения движущегося танка обозначает проблему определения вероятности сложного события (давая при этом понятие гипотезы).
После чего преподаватель доводит условие задачи (Пример 7), формулу для вычисления полной вероятности события (без её вывода) и условия её применения.
При постановке задачи и пояснения физической сущности вопроса преподаватель использует оверхэд-проектор и подготовленные слайды.
Решение задачи преподаватель проводит на доске, особое внимание при этом обращая на методику её решения и порядок записи. В заключении решения задачи преподаватель под запись доводит вывод, отражающий физическую сущность полученного результата.
При решении ряда практических задач вычисление вероятности некоторого сложного события можно существенно облегчить, если связать наступление этого события с наступлением единственно возможных и несовместных событий, под которыми понимаются гипотезы о всех возможных исходах испытаний.
Пусть, например, производится выстрел по танку (рисунок 2).
Рисунок 2. Схема решения задачи
Известно, что башня танка, его корпус или ходовая часть имеют не только различные размеры, форму и т.д., что усложняет попадание, но и различную степень уязвимости. Первое приводит к тому, что вероятность попадания в различные отсеки танка будет различной, а второе – к тому, что различной будет и вероятность поражения танка при попадании в его башню, корпус или ходовую часть, а, следовательно, и вероятность поражения танка в целом. Поэтому для облегчения вычисления вероятности поражения танка Р(А) представляется целесообразным ввести гипотезы о возможном исходе стрельбы.
Дадим определение:
Под гипотезами понимают полную группу единственно возможных несовместных событий, которые могут наступить в результате проведения испытаний.
В условиях нашей задачи гипотезы о возможном исходе стрельбы будут следующие:
Н1 ={попадание в башню танка};
Н2 ={попадание в корпус танка};
Н3 = {попадание в ходовую часть танка};
Н0 ={промах}.
Вероятности этих гипотез Р(Н1), Р(Н2), Р(Н3), Р(Н0) можно определить и не проводя стрельбу по танку, достаточно, например, провести стрельбу по его макету. Далее можно поставить задачу определения условных вероятностей поражения танка при попадании в различные его отсеки, т.е. поставить задачу определения условных вероятностей поражения танка при реализации выбранных гипотез: Н1={при попадании в башню танка}; Н2={при попадании в корпус танка}; Н3= {при попадании в ходовую часть танка}:
Р(АН1) – вероятность поражения танка при попадании в башню;
Р(АН2) – вероятность поражение танка при попадании в корпус;
Р(АН3) – вероятность поражение танка при попадании в ходовую часть.
Указанные условные вероятности возможно определить опытным путём, проводя полигонные стрельбы по танку.
Пример 7: ведётся стрельба из орудия по танку. Известно, что при попадании снаряда в башню вероятность поражения танка равна 0,8; при попадании в корпус – 0,6; при попадании в ходовую часть – 0,5.
Известны также вероятности попадания снаряда в каждый из отсеков танка. Вероятность попадания в башню танка равна 0,2. Вероятность попадания в корпус равна 0,3; вероятность попадания в ходовую часть равна 0,1.
Требуется определить вероятность поражения танка при одном выстреле.
Вычислить вероятность наступления интересующего нас события позволяет формула, получившая особое название формулы полной вероятности.
Полная вероятность события равна сумме парных произведений вероятностей каждой из гипотез на отвечающие им условные вероятности наступления этого события.
Данная формула является следствием из обеих теорем – теорем сложения и умножения вероятностей.
При определении полной вероятности необходимо следить, чтобы были учтены все гипотезы о возможном исходе испытания, при которых может наступить интересующее нас событие, т.е. гипотезы должны составлять полную группу несовместных событий. Свидетельством полного учёта всех гипотез является выполнение равенства
Если данное равенство не выполняется, то это означает, что учтены не все гипотезы о возможных исходах испытания.
Таким образом оказывается, что знания вероятностей гипотез Р(Н1), Р(Н2), Р(Н3), о возможных исходах стрельбы и условных вероятностей наступления интересующего нас события А – поражение танка при осуществлении этих гипотез Р(АН1), Р(АН2), Р(АН3) является достаточным для вычисления вероятности поражения танка, т.е. наступления интересующего нас события А.
Вернёмся к решению примера.
Решение:
Таким образом, возможные гипотезы об исходах стрельбы:
Н1 = {попадание в башню танка};
Н2 = {попадание в корпус танка};
Н3 = {попадание в ходовую часть}.
По условию задачи вероятности гипотез будут равны:
гипотеза Н1={попадания в башню танка} – равна 0,2 (Р(Н1) = 0,2);
гипотеза Н2 ={попадание в корпус танка} – равна 0,3 (Р(Н2) = 0,3);
гипотеза Н3 ={попадание в ходовую часть} – равна 0,1 (Р(Н3) = 0,1).
Интересующее нас событие А = {поражение танка}. По условию задачи вероятность поражения танка при реализации гипотез:
Н1 = {попадание в башню танка} равна 0,8 (Р(АН1) = 0,8);
Н2 = {попадание в корпус танка} равна 0,6 (Р(АН2) = 0,6);
Н3 = {попадание в ходовую часть} равна 0,5 (Р(АН3) = 0,5).
Проверим, все ли гипотезы об исходах стрельбы учтены:
Р(Н1) + Р(Н2) + Р(Н3) = 0,2 + 0,3 + 0,1 = 0,6 1.
Следовательно, имеющиеся гипотезы не составляют полной группы событий и не учтено событие Н0={промах}, вероятность которого можно определить как вероятность противоположного попаданию в танк события – промаху – :
Таким образом, вероятность гипотезы Н0={промах} равна 0,4. (РН0) =0,4).
Вероятность поражения танка при реализации гипотезы Н0={промах} равна 0. (Р(АН0) = 0).
Применяя формулу полной вероятности для решения задачи получим:
Следовательно, полная вероятность поражения танка при одном выстреле равна
Р(А) = 0,39 = 39%.
Вывод: Полученный результат означает, что при проведении достаточно большого числа стрельб в аналогичных условиях в среднем в 39 случаях из 100 танк окажется поражённым.
Заключительная часть занятия:
напомнить тему и учебные вопросы занятия;
отметить степень достижения учебных целей;
ответить на возникшие вопросы;
отметить работу группы в целом;
оценить работу студентов;
поставить задачу на подготовку к следующему занятию:
На занятии иметь:
Калькуляторы – на каждого
Задание на самостоятельную работу
Изучить:
Вентцель Е.С., Овчаров Л.А.. Теория вероятностей и её инженерные приложения. Учебное пособие. Издание третье, переработанное и дополненное. – М.: «Академия», 2003 г. – 464 с. – стр. 32-35
Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. – М.: Высшая школа», 2004 г. – 480 с. – стр.18-29.
Лекция 4 Формула Байеса, вероятность появления хотя бы одного события
Учебные и воспитательные цели:
1. Изучить частную теорему о повторении опытов.
2. Изучить порядок определения вероятности события не менее заданного числа раз.
Вид занятия: лекция.
Продолжительность занятия: 90 минут.
Учебно-материальное обеспечение занятия:
Медиа-проектор, ноутбук, слайды Power Point (Оверхэд-проектор, слайды).
Литература:
а) основная:
1. Вентцель Е.С. Теория вероятностей. Учебник. Издание восьмое, стереотипное. – М.: Высшая школа, 2002 г. – 575 с.
2. Гмурман В.Е. Теория вероятностей и математическая статистика. Учебное пособие. Издание десятое, стереотипное. – М.: Высшая школа», 2004 г. – 480 с.
Структура занятия и расчёт времени
Структура занятия |
Время, мин |
I. Вводная часть занятия |
15 |
II. Основная часть занятия |
70 |
1. Формула Байеса, вероятность появления хотя бы одного события |
70 |
III. Заключительная часть занятия |
5 |
Текст лекции
