Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты - госы 2013.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
1.69 Mб
Скачать

83. Прогностичность методик. Связь с надежностью и валидностью. Объединение данных различных тестов.

Принцип статистической экстраполяции результатов психодиагностического измерения нельзя считать оправданным без проведения специальных проверок.

Для принятия стратегии экстраполяционного статистического прогноза требуется предварительно произвести эмпирическое измерение надежности - устойчивости (ретестовой надежности) на заданном промежутке времени.

При этом важна не только длина отрезка времени между двумя измерениями, но и его заполненность теми или иными значимыми для индивида событиями.

В некоторых случаях целесообразно начинать решать проблемы психопрогностики без всякого привлечения внешней по отношению к тесту критериальной информации, т.е. средствами проверки надежности, но не средствами проверки валидности. Если уже таким способом будет получен отрицательный результат, то заведомо будет получен и для измерения валидности статического прогноза (вспомним основной принцип: валидность методики не превышает ее надежность).

Однако надежность лишь необходимое, но, естественно, недостаточное условие прогностической валидности. Можно убедиться в высокой устойчивости тестового показателя на длительных промежутках времени, но из этого вовсе не следует, что будут получены значимые линейные корреляции этого показателя с требуемым критерием валидности -эффективности.- корреляции, оправдывающие статический прогноз.

Линейные и порядковые прогностические стратегии на практике применяются не к одномерным, а к многомерным данным. Среди математических моделей прогнозирования до сих пор наибольшей популярностью пользуются относительно простые (а иногда и неоправданно упрощенные) регрессионные модели.

При этом для многомерного случая задача психометриста сводится к построению уравнения множественной регрессии:

Y= ß1X1+ ß2X2…..+ ßiXi+ ßkXk (3.5.1)

где Y- прогнозируемая переменная (критерий прогностической ва-лидности);

Xi - значение i-го тестового показателя из рассматриваемой батареи тестовых показателей;

ßi, - значение весового коэффициента, указывающего, на сколько (в единицах стандартных отклонений) изменяется прогнозируемая переменная при изменении тестового показателя Xi.

Для составления указанного уравнения требуется произвести «упреждающее» измерение тестовых показателей по отношению к критериальному показателю Y, измерение которого производится по истечении некоторого отрезка времени T, называемого в прогнозировании периодом упреждения.

Общая эффективность прогноза на основе регрессионного уравнения оценивается с помощью подсчета коэффициента множественной корреляции R2 (Суходольский Г. В., 1972) и последующей оценки его значимости по критерию Фишера:

(3.5.2)

где - эмпирическое значение статистики Фишера со степенями свободы V1 = k и У2 = N-k;

N— количество индивидов;

k - количество тестовых показателей.

Не следует забывать, что основой применения этой модели прогноза является экстраполяция - предположение о том, что на новом отрезке времени T’ будут действовать те же тенденции связи переменных, что и на отрезке T, на котором прежде измерялись весовые коэффициенты ßi. Не следует также забывать, что корректность прогноза обусловлена периодом упреждения: для больших (или меньших) T использование уравнения (3.5.1) может оказаться некорректным.

Прогностические возможности указанного метода ограничены однократностью измерения тестовых показателей .X1, Х2 ..., Xk. В силу однократности измерения этот метод оказывается эффективным опять-таки только по отношению к самым универсальным и статическим показателям (таким, например, как интегральные свойства темперамента или нервной системы), обеспечивающим очень грубый, вероятностный, приближенный прогноз.

Более сложные математические методы прогнозирования (например, учитывающие циклическую динамику объектов) пока еще редко используются в психодиагностике, так как требуют частых многократных измерений системы тестовых показателей, что оказывается невозможным по чисто практическим причинам. Тем не менее уже сегодня можно твердо констатировать недостаточность линейных моделей прогнозирования.