
- •Оглавнение
- •Примерная структура заданийдля самостоятельной работы
- •Содержание дисциплины «Математическая логика».(116ч.)
- •Раздел 1. Теория множеств.(36ч.)
- •Раздел 2. Теория графов.(24ч.)
- •Раздел 1. Теория множеств.(36ч.)
- •Самостоятельная работа №1.
- •Теоретический материал.
- •Тема 1.2. Основные операции над множествами.
- •Тема 1.3. Соответствие между множествами. Отображения.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №5.
- •Теоретический материал.
- •Тема 1.4. Отношения. Бинарные отношения и их свойства.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №7.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №8.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 1.5. Элементы комбинаторики. Самостоятельная работа №9.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №10.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 1.6. Алгебра подстановок. Самостоятельная работа №12.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Раздел 2. Теория графов.(24ч.)
- •Тема 2.1. Основные понятия и определения графа и его элементов. Самостоятельная работа №13.
- •3. Решение задачи о коммивояжере edu.Nstu.Ru/courses/mo_tpr/files/3.4.Html Тема 2.2. Операции над графами.
- •Бинарные операции
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 2.3. Способы задания графа. Самостоятельная работа №15.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 2.4. Сети. Сетевые модели представления информации. Самостоятельная работа №16.
- •Теоретический материал.
- •Сетевая модель данных
- •Реляционная модель данных.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Раздел 3. Математическая логика.(36ч.)
- •Тема 3.1. Понятие как форма мышления. Самостоятельная работа №17.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 3.2. Суждение как форма мышления. Самостоятельная работа №18.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 3.3. Булевы функции. Самостоятельная работа №19.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №20.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №21.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 3.4. Минимизация булевых функций. Самостоятельная работа №22.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Тема 3.5. Полином Жегалкина. Самостоятельная работа №24.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Раздел 4. Формальные системы и умозаключения. Логика предикатов.(20ч.)
- •Тема 4.1. Формальные системы. Самостоятельная работа №25.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №26.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •3. Геометрия Лобачевского – Значение интерпретаций геометрии Лобачевского geom.Kgsu.Ru
- •Тема 4.2. Логика предикатов. Самостоятельная работа №27.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •Самостоятельная работа №28.
- •Теоретический материал.
- •Основные источники:
- •Дополнительные источники:
- •Тема 4.3. Методы научного познания.
- •Методы установления причинной связи.
- •Основные источники:
- •Дополнительные источники:
- •Интернет ресурсы:
- •2. Гиндикин с.Г. Алгебра логики в задачах. Электронная библиотека Московского государственного университета. Http://lib.Mexmat.Ru/books/1383
- •3. Методы исследования причинных связей. Dic.Academic.Ru
Основные источники:
1. Дискретная математика : учебник для студ. учреждений сред. проф. образования / М.С.Спирина, П.А.Спирин. —. 7-е изд., стер. — М. : Издательский центр «Академия», 2012. —. 368 с.
2. М.С.Спирина, П.А.Спирин. Дискретная математика. Изд-во Академия/Academia", 2010 г.
Дополнительные источники:
1. Вентцель Е.С. «Исследование операций, задачи, принципы, методология» М. Наука 1988 г. 2. Гончарова Г.А., Мочалин А.А. Элементы дискретной математики. М. Форум - инфри - м 2003 г. 3. Горбатов В.А. Основы дискретной математики. М. Наука 1986 г. 4. Карпов В.Г., Мощенский В.А. Математическая наука и Дискретная математика. Минск. Винца школа 1977 г. 5. Кузнецов О.П., Адельсон - Вильский Г.М. Дискретная математика для инженера. Энергоатомиздат, 1998 г. 6. Нефедов В.Н., Осипова В.А. Курс дискретной математики. М. Издательство МАИ 1992 г. 7. Нефедов Ф.А. Дискретная математика для программистов. СПб – Питер. 2001 г. 8. Яблонский С.В. Введение в дискретную математику. М. Наука, 1986 г., 384с.
Интернет ресурсы:
1. М.М. Арсланов, И.Ш. Калимуллин. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ.http://www.ksu.ru/f5/k2/bin_files/logika!13.pdf
2. Гиндикин С.Г. Алгебра логики в задачах. Электронная библиотека Московского государственного университета. http://lib.mexmat.ru/books/1383
Самостоятельная работа №28.
Тема: Простые категорические силлогизмы. Энтимемы.
Время выполнения задания – 2ч.
Цель работы: Закрепление знаний по простым категорическим силлогизмам и Энтимемам.
(напишите реферат по теме и ответе на контрольные вопросы.)
Теоретический материал.
К дедуктивным умозаключениям относится простой категорический силлогизм, в котором обе посылки и вывод представлены простыми категорическими суждениями, например:
Все студенты первых курсов (М) изучают логику.
Иванова – студентка первого курса (М).
Иванова (S) изучает логику (P).
Здесь важную роль играет средний термин (М), который соединяет два крайних термина - субъект и предикат умозаключения. Средний термин содержится в обеих посылках, но его нет в выводе.
Чтобы правильно построить простой категорический силлогизм или проверить правильность его построения, необходимо руководствоваться правилами терминов, правилами посылок и правилами фигур.
Правила терминов:
1. Из двух отрицательных посылок нельзя сделать вывода.
2. Из двух частных посылок нельзя сделать вывода.
3. Если одна из посылок отрицательная, то и заключение отрицательное.
4. Если одна из посылок частная, то заключение частное.
Модус, или вид, это качественные и количественные разновидности посылок и вывода из них. Всего из 256 модусов – 19 правильных. Модус характеризует соблюдение правил и истинности вывода.
Правильные модусы:
1 фигура: ААА, ЕАЕ, АJJ, EJO.
2 фигура: AEE, AOO, EAE, EJO.
3 фигура: AAJ, EAO, JAJ, OAO, EJO.
4 фигура: AAJ, AEE, JAJ, EAO, EJO.
При характеристике сложных, развернутых силлогизмов следует обратиться к соответствующим разделам учебной литературы. Следует обратить внимание на виды полисиллогизма (прогрессивный и регрессивный силлогизм) и его разновидность – сорит. При их характеристике необходимо подчеркнуть, что они способствуют более быстрой переработке информации и решению задач, упрощают процесс оценки обстановки и принятия решения.
Энтимема (в уме) – сокращенный категорически силлогизм, в котором пропущена посылка или заключение, когда не требуется высказывать известные истины. Например: Все студенты должны добросовестно учиться, а ты студент.
Пропущено заключение…. Все студенты должны добросовестно учиться.
Ты - студент
Ты должен добросовестно учиться.
При анализе дедуктивной логики, позволяющей получить частный вывод на основе одной общей и одной частной посылок, студенту следует обратить внимание на требования Аристотеля к структуре и правилам вывода силлогизма. Типичной формой дедукции является простой категорический силлогизм, в котором из двух категорических суждений (посылок), связанных общим термином, получается новое суждение – вывод.
Все студенты (S) знают логику (Р).
Иванов (S) – студент (Р)
Иванов (S) – знает логику (Р)
Посылки связаны общим термином – студенты (М – медиум, посредник). М. – входит в посылки, но отсутствует в заключении. В выводе предикат (знает логику) шире субъекта по объему. Поэтому предикат вывода – больший термин, а субъект вывода – меньший термин. Соответственно, посылки в которые входят больший и меньший термины, называются большей посылкой и меньшей посылкой. В зависимости от положения среднего термина зависит качественный и количественный характер вывода.
Студенту следует разобрать и запомнить особые правила терминов и посылок простого категорического силлогизма.
Правила фигур включает:
I фигура: большая посылка – общая, меньшая утвердительная.
II фигура: большая посылка – общая, одна из посылок – отрицательная
III фигура: меньшая посылка – утвердительная, заключение частное.
IV фигура: общеутвердительного заключения не дает.
Более глубокое представление о содержании дедуктивной логики дают по характеру посылок и выводов дают условные, условно – категорические и разделительные силлогизмы. В условном умозаключении обе посылки и вывод – условные суждения. Его структура: «Если А, то В».
Условно – категорическое умозаключение содержит одной из посылок условное суждение, другой – простое категорическое суждение. Достоверное заключение, с необходимостью следующее из посылок дает утверждающий и отрицающий модусы. Его схема: Если А, то В. А
Отрицающий модус позволяет строить достоверные умозаключения от отрицания следствия и отрицанию основания. Например: Если А, то В. не В.
Если студент знает логику, то он правильно мыслит.
Студент неправильно мыслит.
Студент не знает логики.
Вероятный вывод дают умозаключения, где мысль движется в направлении обратном утверждающему модусу или обратном отрицающему модусу.
В разделительном силлогизме одна из посылок должна быть разделительным суждением. В умозаключении по утверждающе – отрицающему модусу производится отрицание последствием утверждения.
Наука бывает фундаментальной или прикладной.
Данная наука - прикладная
Следовательно, данная наука не может быть фундаментальной.
В разделительном силлогизме по отрицающие – утверждающему модусу утверждение производится путем отрицания. Например А или В; не – А.
Замечание: Кроме того, студенту следует обратить внимание на условно – разделительное умозаключение, где одна посылка условная, другая разделительная. Это умозаключение называют лематическим (предположительно слепым). Оно может быть дилеммой, трилеммой и т.д.
Вопросы для самоконтроля:
1. Дайте определения модусу.
2. Что такое «силлогизм»?
Что такое «Энтимема»?
4. Что такое «лематическое» умозаключение?
Рекомендуемая литература: