Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_k_zachetu_po_TAU.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
810.36 Кб
Скачать
  1. Что такое «Кривая разгона»

Кривой разгона называют процесс изменения во времени выходной переменной, вызванный ступенчатым входным воздействием. Кривая разгона служит для определения динамических свойств объекта.

Запаздывание объекта выражается в том, что его выходная величина начинает изменяться не сразу после нанесения возмущения, а только через некоторый промежуток времени, называемым временем запаздывания.

Под постоянной времени объекта понимается время, в течение которого выходная величина достигла бы своего нового установившегося значения, если бы она изменялась с постоянной скоростью, равной скорости ее изменения в начальный момент времени.

Коэффициент передачи объекта представляет собой изменение выходной величины объекта при переходе из начального в новое установившееся состояние, отнесенное к изменению возмущения на входе [1].

Снятие кривой разгона предусматривает нанесение на объект ступенчатого возмущения путем энергичного изменения степени открытия проходного сечения регулирующего органа, при этом отмечают величину и момент нанесения возмущения. Изменения выходной величины регистрируют до тех пор, пока объект не примет установившееся значение.

Кривая разгона отличается от переходной характеристики тем, что амплитуда «скачка» может быть произвольной, в то время как переходная характеристика есть реакция объекта управления на единичный скачок по управляющей переменной [2].

Кривая разгона получается пересчетом безразмерной кривой разгона по формулам

t = Mt . tб

Δy = My . Δyб

где t – реальное время,

tб – безразмерное время,

Mt – масштаб времени,

My – масштаб регулируемой переменной,

Δy – изменение регулируемой переменной в натуральных единицах,

Δyб – изменение регулируемой переменной в безразмерном виде

  1. Дать определение передаточной функции

ПЕРЕДАТОЧНАЯ ФУНКЦИЯ линейной стационарной системы управления (системы автоматич. регулирования) - Лапласа преобразование отклика системы на воздействие единичной импульсной функции (дельта-функции) 6 (г) при нулевых условиях в момент t=0 (сам этот отклик наз. функцией веса, импульсной переходной функцией или импульсной характеристикой системы).

Эквивалентное определение: ПЕРЕДАТОЧНАЯ ФУНКЦИЯ - есть отношение изображений по Лапласу (см. Операционное исчисление).выходного и входного сигналов с нулевыми начальными данными. П. ф. представляет собой дробно-рациональную функцию W(p).комплексного переменного р;она является коэффициентом в линейном соотношении

(1)

связывающем изображение по Лапласу U(р).входа системы (воздействия, управления) и(t).и изображение по Лапласу Y(р).выхода системы (отклика, реакции) y(t).с нулевыми начальными значениями. В теории управления соотношение (1) принято изображать графически (см. рис.).

Пусть, напр., система управления описывается линейным обыкновенным дифференциальным уравнением с постоянными коэффициентами

(2) (в реальных системах, как правило, ). Тогда

(3)

Это же выражение можно получить, если, используя операторную форму записи уравнения (2) с помощью оператора дифференцирования р

определить П. ф. как отношение входного оператора системы В(р) к собственному оператору системы (р). П. ф. (3) системы (2) допускает следующее толкование: если выбрать управление , где s - комплексное число такое, что , то линейное неоднородное уравнение (2) имеет частное решение .

П. ф. не следует путать с переходной функцией, к-рая представляет собой отклик системы на воздействие единичной ступенчатой ф у н к ц и и

при нулевых начальных условиях.

П. ф. является одним из основных понятий теории линейных стационарных систем управления. Она не зависит от характера приложенных к системе управляющих воздействий, а определяется лишь параметрами самой системы и дает тем самым ее динамич. характеристику. Особую роль в теории управления играет функция W(iw) чисто мнимого аргумента, наз. амплитудно-фазовой, или частотной, характеристикой системы. Понятие П. ф. обобщается и на линейные системы управления иных типов (матричные, нестационарные, дискретные, с распределенными параметрами и др.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]