
- •Устройства программного управления
- •Глава 1. Классификация систем управления 17
- •Глава 2. Общие принципы построения систем чпу 55
- •Глава 3. Задачи управления 121
- •Глава 4. Технологии разработки программного обеспечения систем управления 178
- •Глава 5. Документы пользователя систем чпу 231
- •Глава 1.
- •1.1. Современный мировой уровень архитектурных решений в области чпу
- •1.1.1. Системы cnc и pcnc-1
- •1.1.2. Системы pcnc-2
- •1.1.3. Система pcnc-3
- •1.1.4. Системы pcnc-4
- •1.2. Интеграция на основе открытого управления и стандарта орс
- •1.2.1. Представление об открытом управлении
- •1 .2.2. Системы scada
- •1.2.3. Стандарт орс
- •1.3. Интеграция на основе комплекса производственных стандартов step (Standard for the Exchange of Product model data)
- •1.3.1. Обзор комплекса производственных стандартов step
- •1.3.2. Step-nc
- •1.3.3. Использование в интерфейсе систем чпу языков express и xml
- •Глава 2. Общие принципы построения систем чпу
- •2.1. Архитектура систем pcnc
- •2.1.1. Признаки нового поколения систем чпу
- •2.1.2. Модульная архитектура систем чпу на прикладном уровне
- •2.1.3. Открытая архитектура систем управления
- •2.1.4. Виртуальная модель pc-подсистемы чпу
- •2.2. Проблема реального времени в системах управления
- •2.2.1. Постановка задачи
- •2.2.2. Реальное время в системе управления
- •2.2.3. Базовые понятия операционной системы реального времени
- •2.2.4. Использование в системах управления операционной системы Windows nt
- •2.2.5. Стратегия диспетчеризации на базе расширения rtx (Real Time extension)
- •2.2.6. Принцип разбиения потоков (threads)
- •2.3. Проблемы управления электроавтоматикой
- •2.3.1. Классификация систем управления электроавтоматикой
- •2.3.2. Система понятий, используемых при организации системы управления
- •2.3.3. Структура проекта системы управления электроавтоматикой (клиентская часть)
- •2.3.4. Альтернативные структуры проекта в клиентской части
- •2 Рис. 45. Диаграмма периодической работы .3.6. Объектный подход при управлении электроавтоматикой
- •2.3.7. Особенности управления электроавтоматикой станков с чпу
- •2.4. Построение межмодульной коммуникационной среды
- •2.4.1. Базовые функции коммуникационной среды
- •2.4.2. Клиент-серверные транзакции при запросе данных
- •2.4.3. Виртуальная структура объектно-ориентированной магистрали
- •2.4.4. Организация коммуникационной среды в виде открытой модульной системы
- •2.5. Принципы построения удаленных терминалов чпу
- •2.5.1. Удаленный терминал в системе управления
- •2.5.2. Информационные технологии, используемые при создании удаленного терминала
- •2.5.3. Библиотеки классов Java, используемые при создании апплетов
- •2.5.4. Инструментарий разработки удаленного терминала
- •2 .5.5. Специфика удаленного терминала системы управления
- •2.6. Особенности архитектуры систем чпу, поддерживающих стандарт iso 14649 step-nc
- •2.6.1. Традиционное программирование станков с чпу и стандарт step-nc
- •2.6.2. Язык express
- •2.6.3. Процессы и ресурсы в step-nc
- •2.6.4. Смешанная архитектура
- •3.1. Реализация геометрической задачи
- •3.1.1. Интерпретатор управляющих программ
- •3 .1.2. Интерполятор
- •3.2. Реализация логической задачи управления
- •3.2.1. Формализм описания циклов электроавтоматики
- •3.2.2. Инструментальная поддержка визуального программирования циклов электроавтоматики
- •3.3. Управление электроавтоматикой станков с чпу по типу виртуальных контроллеров SoftPlc
- •3.3.1. Объектно-ориентированный подход при организации математического обеспечения виртуальных контроллеров
- •3.3.2. Архитектура виртуального контроллера
- •3.3.3. Программная реализация виртуального контроллера
- •3.4. Реализация терминальной задачи
- •3.4.1. Интерпретатор диалога оператора в Windows-интерфейсе
- •3.4.2. Специфика построения редактора управляющих программ в коде iso-7bit (в составе терминальной задачи)
- •3.4.3. Редактор-отладчик управляющих программ на языке высокого уровня (в составе терминальной задачи)
3.3. Управление электроавтоматикой станков с чпу по типу виртуальных контроллеров SoftPlc
Ha очередном витке эволюции программируемых контроллеров появилась и получила заслуженную популярность идея их программной реализации (SoftPLC). Наибольший эффект подобная идея дает в системах ЧПУ, где программное обеспечение виртуального контроллера SoftPLC работает в одной операционной среде с программным обеспечением ЧПУ. В этой связи возникает необходимость построения хорошо организованного и обозримого математического обеспечения виртуального контроллера на основе объектно-ориентированного подхода. Сегодня появляется реальная возможность программной реализации управления электроавтоматикой станков в рамках общего программного обеспечения систем ЧПУ без привлечения дополнительной аппаратуры и системного программного обеспечения программируемых контроллеров, которые являются неотъемлемой частью практически любой современной системы ЧПУ. (Далее предполагаются системы ЧПУ, построенные на базе персональных компьютеров.) [3].
Подобные программные системы управления электроавтоматикой получили наименование виртуальных контроллеров SoftPLC. Указанный подход позволяет снизить стоимость системы управления при одновременном получении ряда преимуществ, в том числе упрощение общего программного обеспечения, уменьшение ошибок системного программирования, возможность отладки управляющих программ электроавтоматики в рамках самой системы ЧПУ, гибкость конфигурирования электроавтоматики, возможность использования различных коммерческих библиотек.
Далее предлагается объектно-ориентированный подход для построения виртуальных контроллеров электроавтоматики применительно к станкам с системами ЧПУ типа PCNC.
3.3.1. Объектно-ориентированный подход при организации математического обеспечения виртуальных контроллеров
В основе технологии создания программного обеспечения электроавтоматики лежат обычные для объектно-ориентированного программирования понятия класса и объекта. При этом класс описывает тип оборудования, а объект - конкретный экземпляр. Таким образом, при объявлении класса, согласно принципу инкапсуляции, создаются шаблоны структур данных и методы, которые будут работать с этими данными. В объекте класса по шаблону выстраиваются конкретные данные и приводится ссылка на обслуживающий их процесс.
При появлении нового типа оборудования, благодаря механизму наследования, разработчик не нуждается в том, чтобы заново разрабатывать новый класс - достаточно выбрать наиболее близкий и реализовать отличия в новом классе. Тем самым обеспечивается простота модификаций, сокращаются затраты времени на разработку, снижается общая стоимость разработки.
Наиболее важен тот факт, что объектный подход позволяет создавать хорошо структурированные сложные системы управления электроавтоматикой. Основные преимущества, приобретаемые при этом, состоят в следующем:
повышается уровень унификации разработки; для повторного использования пригодны не только управляющие программы, но и проекты в целом, что служит хорошей основой для построения среды разработки. Снижаются затраты времени и средств на создание нового проекта;
возникает возможность повторного использования собственных функциональных модулей и готовых модулей других разработчиков, что делает систему управления открытой. Уменьшается вероятность ошибок при разработке сложных систем, увеличивается уверенность в правильности принимаемых решений.
Все эти достоинства обеспечиваются благодаря лежащим в основе объектно-ориентированной технологии принципам наследования, инкапсуляции и полиморфизма.