
- •Устройства программного управления
- •Глава 1. Классификация систем управления 17
- •Глава 2. Общие принципы построения систем чпу 55
- •Глава 3. Задачи управления 121
- •Глава 4. Технологии разработки программного обеспечения систем управления 178
- •Глава 5. Документы пользователя систем чпу 231
- •Глава 1.
- •1.1. Современный мировой уровень архитектурных решений в области чпу
- •1.1.1. Системы cnc и pcnc-1
- •1.1.2. Системы pcnc-2
- •1.1.3. Система pcnc-3
- •1.1.4. Системы pcnc-4
- •1.2. Интеграция на основе открытого управления и стандарта орс
- •1.2.1. Представление об открытом управлении
- •1 .2.2. Системы scada
- •1.2.3. Стандарт орс
- •1.3. Интеграция на основе комплекса производственных стандартов step (Standard for the Exchange of Product model data)
- •1.3.1. Обзор комплекса производственных стандартов step
- •1.3.2. Step-nc
- •1.3.3. Использование в интерфейсе систем чпу языков express и xml
- •Глава 2. Общие принципы построения систем чпу
- •2.1. Архитектура систем pcnc
- •2.1.1. Признаки нового поколения систем чпу
- •2.1.2. Модульная архитектура систем чпу на прикладном уровне
- •2.1.3. Открытая архитектура систем управления
- •2.1.4. Виртуальная модель pc-подсистемы чпу
- •2.2. Проблема реального времени в системах управления
- •2.2.1. Постановка задачи
- •2.2.2. Реальное время в системе управления
- •2.2.3. Базовые понятия операционной системы реального времени
- •2.2.4. Использование в системах управления операционной системы Windows nt
- •2.2.5. Стратегия диспетчеризации на базе расширения rtx (Real Time extension)
- •2.2.6. Принцип разбиения потоков (threads)
- •2.3. Проблемы управления электроавтоматикой
- •2.3.1. Классификация систем управления электроавтоматикой
- •2.3.2. Система понятий, используемых при организации системы управления
- •2.3.3. Структура проекта системы управления электроавтоматикой (клиентская часть)
- •2.3.4. Альтернативные структуры проекта в клиентской части
- •2 Рис. 45. Диаграмма периодической работы .3.6. Объектный подход при управлении электроавтоматикой
- •2.3.7. Особенности управления электроавтоматикой станков с чпу
- •2.4. Построение межмодульной коммуникационной среды
- •2.4.1. Базовые функции коммуникационной среды
- •2.4.2. Клиент-серверные транзакции при запросе данных
- •2.4.3. Виртуальная структура объектно-ориентированной магистрали
- •2.4.4. Организация коммуникационной среды в виде открытой модульной системы
- •2.5. Принципы построения удаленных терминалов чпу
- •2.5.1. Удаленный терминал в системе управления
- •2.5.2. Информационные технологии, используемые при создании удаленного терминала
- •2.5.3. Библиотеки классов Java, используемые при создании апплетов
- •2.5.4. Инструментарий разработки удаленного терминала
- •2 .5.5. Специфика удаленного терминала системы управления
- •2.6. Особенности архитектуры систем чпу, поддерживающих стандарт iso 14649 step-nc
- •2.6.1. Традиционное программирование станков с чпу и стандарт step-nc
- •2.6.2. Язык express
- •2.6.3. Процессы и ресурсы в step-nc
- •2.6.4. Смешанная архитектура
- •3.1. Реализация геометрической задачи
- •3.1.1. Интерпретатор управляющих программ
- •3 .1.2. Интерполятор
- •3.2. Реализация логической задачи управления
- •3.2.1. Формализм описания циклов электроавтоматики
- •3.2.2. Инструментальная поддержка визуального программирования циклов электроавтоматики
- •3.3. Управление электроавтоматикой станков с чпу по типу виртуальных контроллеров SoftPlc
- •3.3.1. Объектно-ориентированный подход при организации математического обеспечения виртуальных контроллеров
- •3.3.2. Архитектура виртуального контроллера
- •3.3.3. Программная реализация виртуального контроллера
- •3.4. Реализация терминальной задачи
- •3.4.1. Интерпретатор диалога оператора в Windows-интерфейсе
- •3.4.2. Специфика построения редактора управляющих программ в коде iso-7bit (в составе терминальной задачи)
- •3.4.3. Редактор-отладчик управляющих программ на языке высокого уровня (в составе терминальной задачи)
2.5. Принципы построения удаленных терминалов чпу
Существуют ситуации, когда построение распределенных систем ЧПУ создает дополнительные удобства, а также ситуации, когда без этого обойтись невозможно. В обоих случаях применяют удаленный (от ядра ЧПУ) терминал, который дублирует основной терминал системы ЧПУ или заменяет его. Особенность удаленного терминала состоит в том, что он может использовать иную платформу, его средства визуализации и управления более лаконичны. При этом должен осуществляться доступ к основным функциям ядра ЧПУ через локальную или корпоративную сети, а быть может, через Интернет. Рассмотрены принципы разработки удаленных терминалов, которые являются новыми компонентами распределенных систем управления. Новые требования к системам управления состоят в том, что они все более приобретают распределенный характер. Существенно меняется роль оператора в зоне управления. Особое значение придается возможности подключения удаленных терминалов для получения необходимой информации «снизу» и использования Интернета. Соответственно так называемой технологии «тонкого клиента» (thin client) в качестве web-сервера может выступать сама система ЧПУ. Все эти проблемы были затронуты в рамках исследования, связанного с созданием типового активного удаленного терминала с применением языка Java [35].
2.5.1. Удаленный терминал в системе управления
Удаленный терминал предполагает отделение терминальной задачи ЧПУ от всех остальных или ее дублирование. При этом ядро системы управления располагают, исходя из конструктивных соображений, а терминальную часть - на другом компьютере сети, т.е. там, где это удобно с позиций организации управления. Сеть при этом может быть локальной сетью участка или цеха, Интернет-сетью предприятия или глобальной Интернет-сетью. Удаленный компьютер может иметь платформу, отличную от платформы компьютерной системы ЧПУ.
Необходимость удаленного терминала обусловлена следующими соображениями. В процессе работы оператор системы ЧПУ должен следить за информацией о ходе технологического процесса, текущими координатами приводов подачи, сообщениями об ошибках в системе управления и т.д. Между тем современные станки и технологические линии нередко имеют протяженность, превышающую сотню метров. Традиционное решение состоит в том, что оператор непрерывно перемещается в зоне оборудования, обращаясь к специальным пультам, распределенным по длине рабочего участка. Подобный подход требует значительных затрат и увеличивает площадь рабочего пространства оператора. Альтернативой служит применение в качестве удаленных терминалов портативных компьютеров «note-book» или карманных компьютеров типа Palm, которые могут быть переносными. Для подключения удаленного терминала в различных точках рабочей зоны (через 30 - 50 м) имеются разъемы. При этом оператор может выбрать для себя наиболее комфортную позицию. Организация математического обеспечения удаленного терминала требует разработки новой концепции.