
- •Химическая технология Курс лекций
- •10 Процессы и аппараты химического производства
- •11.1 Характеристика гомогенных процессов
- •11.1.2 Гомогенные процессы в жидкой фазе
- •1 Человечество и окружающая среда
- •1.1 Окружающая среда
- •1.2 Человек – как компонент окружающей среды
- •1.3 Производственная деятельность человека и ресурсы планеты
- •1.4 Реакция окружающей среды на антропогенную деятельность
- •1.5 Биосфера и ее эволюция
- •2. Химическое производство в системе антропогенной деятельности
- •2.1 Материальное производство и его организация
- •Химическая промышленность
- •3 Химическая наука и производство
- •Химическая технология – научная основа химического производства
- •3.2 Особенности химической технологии как науки
- •3.3 Связь химической технологии с другими науками
- •4. Основные компоненты химического производства
- •4.1 Химическое сырье
- •4.2 Ресурсы и рациональное использование сырья
- •4.3 Подготовка химического сырья к переработке
- •4.4 Замена пищевого сырья не пищевым и растительного минеральным.
- •5 Вода в химической промышленности
- •5.1 Использование воды, свойства воды
- •5.2 Промышленная водоподготовка
- •Энергетика химической промышленности
- •6.1 Использование энергии в химической промышленности
- •6.2 Источники энергии
- •6.3Классификация энергетических ресурсов
- •– Теплообменник, 2- реакционный аппарат.
- •7 Экономика химического производства
- •7.1 Технико-экономические показатели химического производства
- •7.2 Структура экономики химической промышленности
- •7.3 Материальные и энергетические балансы химического производства
- •8. Основные закономерности химической технологии
- •8.1. Понятие о химико-технологическом процессе
- •Принципиальная схема хтп
- •8.2. Процессы в химическом реакторе.
- •8.2.1.Химический процесс
- •8. 2.2 Скорость химической реакции
- •8.2.3 Общая скорость химического процесса
- •8.2.4 Термодинамические расчеты химико-технологических процессов
- •8.2.5 Равновесие в системе
- •8.2.6 Расчет равновесия по термодинамическим данным
- •8.2.7 Термодинамический анализ
- •9 Организация химического производства
- •9.1 Химическое производство как система
- •9.2 Моделирование химико-технологической системой
- •9.3 Организация хтп
- •9.3.1 Выбор схемы процесса
- •9.3.2 Выбор параметров процесса
- •9.4 Управление химическим производством
- •10 Процессы и аппараты химического производства
- •10.1 Общая характеристика и классификация процессов
- •10.2 Основные процессы химической технологии и аппаратура для них
- •10.2.1 Гидромеханические процессы
- •10.2.2. Тепловые процессы
- •10.2.3 Массообменные процессы
- •10.3 Химические реакторы
- •10.3.1 Принципы проектирования химических реакторов
- •10.3.2 Классификация химических реакторов
- •10.3.3 Конструкции химических реакторов
- •10.3.4 Устройство контактных аппаратов
- •11 Гомогенные процессы
- •11.1 Характеристика гомогенных процессов
- •11.1.1 Гомогенные процессы в газовой фазе
- •11.1.2 Гомогенные процессы в жидкой фазе
- •11. 2 Основные закономерности гомогенных процессов
- •12 Гетерогенные процессы
- •12.1 Характеристика гетерогенных процессов
- •12.2 Процессы в системе газ- жидкость (г-ж)
- •12.3 Процессы в системе жидкость – твердое (ж-т)
- •12.4 Процессы в системе газ – твердое (г – т)
- •12.5 Процессы в бинарных твердых, двухфазных жидких и многофазных системах
- •12.6 Высокотемпературные процессы и аппараты
- •12.7 Каталитические процессы и аппараты
- •12.7.1. Сущность и виды катализа.
- •12.7.2 Свойства твердых катализаторов и их изготовление
- •12.7.3 Аппаратурное оформление каталитических процессов
- •13 Важнейшие химические производства
- •13.1 Производство серной кислоты
- •13.1.1Применение
- •13.1.2Технологические свойства серной кислоты
- •13.1.3 Способы получения
- •13.1.4 Сырье для производства серной кислоты
- •13.1.5 Общая схема сернокислотного производства
- •13.1.6 Контактный способ производства серной кислоты
- •13.1.7 Производство серной кислоты из серы
- •13.2 Технология связанного азота
- •13.2.1. Сырьевая база азотной промышленности
- •13.2.2. Получение технологических газов
- •13.2.3 Синтез аммиака
- •13.2.4 Производство азотной кислоты
- •13. 3 Технология минеральных удобрений
- •13.3.1 Классификация минеральных удобрений
- •13.3.2 Типовые процессы солевой технологии
- •13.3.3 Разложение фосфатного сырья и получение фосфорных удобрений
- •13.3.3.1 Производство фосфорной кислоты
- •13.3.3.2 Производство простого суперфосфата
- •13.3.3.3 Производство двойного суперфосфата
- •13.3.3 4 Азотнокислотное разложение фосфатов
- •13.3.4 Производство азотных удобрений
- •13.3.4.1 Производство аммиачной селитры
- •13.3.4.2 Производство карбамида
- •13.3.4.3 Производство сульфата аммония
- •13.3.4.4 Производство нитрата кальция.
- •13.3.4.5 Производство жидких азотных удобрений
- •13.3.5 Производство калийных удобрений
- •13.3.5.1 Общая характеристика
- •13.3.5.2 Сырье
- •13.3.5.3 Получение хлористого калия
- •13.3.5.4 Получение сульфата калия.
- •13.4 Производство силикатных материалов
- •13.4.1 Общие сведения о силикатных материалах
- •13.4.2 Типовые процессы технологии силикатных материалов
- •13.5 Производство вяжущих материалов.
- •13.5.1 Общая характеристика и классификация
- •13.5.2 Производство портланд-цемента
- •13.5.3 Производство воздушной извести
- •13.6 Производство стекла
- •13.6.1 Состав и классификация стекол
- •13.6.2 Процесс производства стекла
- •13.7 Производство керамических материалов
- •13.7.1 Общая характеристика и классификация материалов
- •13.7.2 Производство строительного кирпича
- •13.7.3 Производство огнеупоров
- •13.8. Электрохимические производства
- •13.8.1 Электролиз водных растворов хлористого натрия
- •13.8.1.1. Электролиз раствора хлористого натрия в ваннах со стальным катодом и графитовым анодом
- •13.8.1.2 Электролиз растворов хлористого натрия в ваннах с ртутным катодом и графитовым анодом
- •13.8.2 Производство соляной кислоты
- •13.8.3 Электролиз расплавов. Производство алюминия
- •13.8.3.1 Производство глинозема
- •13.8.3.2 Производство алюминия
- •13.9 Металлургия
- •13.9.1 Руды и способы их переработки
- •Общая схема переработки железной руды
- •13.9.2 Производство чугуна
- •13.9.3. Производство стали.
- •13.9.4. Производство меди
- •13.10 Химическая переработка топлива
- •13.10.1 Коксование каменных углей
- •Общая схема коксохимического производства
- •13.10.2. Переработка жидких топлив
- •13.10.3. Производство и переработка газообразного топлива
- •13.11 Основной органический синтез
- •13.11.1 Сырье и процессы оос
- •13.11.2 Синтез метилового спирта
- •13.11.3 Производство этанола
- •13.11.4. Производство ацетилена
- •13.11.5 Производство формальдегида
- •13.11.6. Получение карбамидо-формальдегидных смол.
- •13.11.7 Производство ацетальдегида
- •13.11.8 Производство уксусной кислоты и ангидрида
- •13.12 Производство мономеров
- •13.12.1 Полимеризационные мономеры
- •13.12.2 Производство поливинилацетатной дисперсии
- •13.13 Высокомолекулярные соединения
- •13.12.1 Производство целлюлозы
- •13.13.2 Производство химических волокон
- •13.12.3 Производство пластических масс
- •13.12.4 Получение каучука и резины
13.9.3. Производство стали.
Передел чугуна в сталь заключается в уменьшении количества углерода путем его окисления, в возможно более полном удалении серы и фосфора и в доведении в стали до нужных пределов содержания кремния, марганца и др. элементов.
Окисление углерода можно осуществлять двумя методами: продувкой кислорода через расплавленный чугун - конверторный способ и добавлением в расплавленный чугун твердых окислителей (железной руды, окалины и др.) – мартеновский способ.
В обоих способах углерод окисляется до окиси и двуокиси углерода, а такие примеси, как кремний и марганец в значительной степени переходят в шлак в виде SiО2 и МnО. Для удаления серы и фосфора необходимо держать в шлаке избыточное количество окиси кальция. Различают кислые и основные методы передела чугуна в сталь. Кислые методы применяют для чугунов, содержащих мало фосфора и серы. В мартеновском способе кислые и основные методы передела чугуна в сталь осуществляются в мартеновских печах. При конверторном способе кислый метод передела чугуна в сталь называется бессемеровским, основной же метод носит название томасовского. Жидкий чугун заливают в конвертор, представляющий собой сосуд, изготовленный из листовой стали, сюда же через сопло вдувается кислород под давлением. Конвертор имеет приспособление для его вращения. Заливка чугуна производится через горловину. После заливки чугуна включается дутье. При продувке кислорода через расплавленный чугун в первый период окисляется железо.
2Fе + О2 = 2FеО + 518.8кдж
Образовавшаяся закись железа взаимодействует с кремнием и марганцем по реакциям:
Si + 2 FеО = 2Fе + SiО2 + 369.6 кдж
Мn + FеО = Fе + МnО + 126.4 кдж
Окислы примесей всплывают и переходят в шлак. Металл при этом разогревается, и температура его достигает 16000С. Продолжительность этого периода 3-4 мин. Он называется периодом шлакообразования. Во втором периоде происходит взаимодействие закиси железа с углеродом:
С + FеО = Fе + СО – 75 кдж.
В третьем периоде в результате понижения концентрации углерода в металле окисление его замедляется, усиливается окисление кремния, марганца и железа. По окончании продувки сталь еще не готова, так как в ней присутствует FеО, что делает ее красноломкой и хладноломкой. Для восстановления FеО в конвертор или ковш при разливке стали добавляют раскислители – зеркальный чугун или ферросилиций. Фосфор, содержащийся в чугуне, переходит, в сталь. Недостатком бессемеровского способа является повышенная потеря металла вследствие окисления железа до FеО, переходящего в шлак. Однако высокая производительность конвертора, отсутствие расхода топлива и сравнительная простата обслуживания обусловили преимущественное развитие в производстве стали конверторного способа как более экономичного.
Томасовский способ отличается от бессемеровского в основном тем, что фосфор, содержащийся в чугуне, при продувке кислорода через расплавленный чугун вначале окисляется в Р2О5, которая взаимодействует далее с известью, добавляемой в конвертор, и материалом футеровки конвертора.
Мартеновский способ дает возможность передела чугуна различного состава. Потери металла незначительны. В н.в. около 80% стали выплавляется в мартеновских печах. Однако, мартеновский способ менее выгоден, чем конверторный; строительство мартенов обходится дороже, чем конверторов.
Выплавка стали в электрических печах применяется для получения высококачественных углеродистых и специальных сталей. Преобладающее количество электростали выплавляется в дуговых печах. В электрических печах легко достигается температура 20000С и выше, что позволяет выплавлять тугоплавкие стали и вести процесс на сильноосновных шлаках, позволяющих более полно удалять серу и фосфор из стали.
Свойства стали в значительной степени определяются ее составом, в частности, содержанием углерода. В технически чистом железе содержится до 0.02% углерода. Такое железо обладает высокой пластичностью. С увеличением содержания углерода повышается твердость и прочность стали и одновременно понижается ее пластичность. Марганец, содержание которого в сталях составляет от 0.2 до 1.0% и выше, повышает твердость и прочность стали и одновременно понижает пластические свойства. Кремний повышает предел прочности стали. Никель, хром, вольфрам, молибден, ванадий, кобальт, титан и некоторые другие металлы вводятся в сталь для придания ей особых свойств. По химическому составу сталь подразделяют на углеродистую и легированную. По назначению сталь делится на конструкционную, инструментальную и сталь с особыми свойствами (нержавеющая, кислотоупорная, жаропрочная и др.) Сера, фосфор и растворенные газы являются вредными примесями в сталях.
Процессами прямого получения железа называются способы получения губчатого железа, металлизированного сырья, литого железа или стали непосредственно из железорудного сырья, минуя доменный процесс. Существующие методы прямого получения железа подразделяются:
1) По физическому состоянию получаемого продукта, и соответственно по температуре процесса на:
- получение губчатого железа и металлизированных окатышей при температуре ниже температуры плавления пустой породы;
- получение крицы, т.е. слипшейся массы губчатого железа при температуре плавления пустой породы с образованием шлака;
- получение жидкой стали при температурах выше температуры плавления железа.
2) По природе используемого восстановителя на:
- использование твердых восстановителей;
- использование газообразных восстановителей (СО, Н2)
3) По состоянию слоя обрабатываемого сырья и, соответственно, по конструкции применяемого оборудования на:
- восстановление в плотном неподвижном слое;
- восстановление в плотном подвижном слое;
- восстановление во взвешенном слое;
- восстановление в кипящем слое.
Из этих методов наибольшее распространение получили процессы получения губчатого железа и металлизированных окатышей из высококачественных руд восстановлением в шахтных печах газообразными восстановителями.