
- •Химическая технология Курс лекций
- •10 Процессы и аппараты химического производства
- •11.1 Характеристика гомогенных процессов
- •11.1.2 Гомогенные процессы в жидкой фазе
- •1 Человечество и окружающая среда
- •1.1 Окружающая среда
- •1.2 Человек – как компонент окружающей среды
- •1.3 Производственная деятельность человека и ресурсы планеты
- •1.4 Реакция окружающей среды на антропогенную деятельность
- •1.5 Биосфера и ее эволюция
- •2. Химическое производство в системе антропогенной деятельности
- •2.1 Материальное производство и его организация
- •Химическая промышленность
- •3 Химическая наука и производство
- •Химическая технология – научная основа химического производства
- •3.2 Особенности химической технологии как науки
- •3.3 Связь химической технологии с другими науками
- •4. Основные компоненты химического производства
- •4.1 Химическое сырье
- •4.2 Ресурсы и рациональное использование сырья
- •4.3 Подготовка химического сырья к переработке
- •4.4 Замена пищевого сырья не пищевым и растительного минеральным.
- •5 Вода в химической промышленности
- •5.1 Использование воды, свойства воды
- •5.2 Промышленная водоподготовка
- •Энергетика химической промышленности
- •6.1 Использование энергии в химической промышленности
- •6.2 Источники энергии
- •6.3Классификация энергетических ресурсов
- •– Теплообменник, 2- реакционный аппарат.
- •7 Экономика химического производства
- •7.1 Технико-экономические показатели химического производства
- •7.2 Структура экономики химической промышленности
- •7.3 Материальные и энергетические балансы химического производства
- •8. Основные закономерности химической технологии
- •8.1. Понятие о химико-технологическом процессе
- •Принципиальная схема хтп
- •8.2. Процессы в химическом реакторе.
- •8.2.1.Химический процесс
- •8. 2.2 Скорость химической реакции
- •8.2.3 Общая скорость химического процесса
- •8.2.4 Термодинамические расчеты химико-технологических процессов
- •8.2.5 Равновесие в системе
- •8.2.6 Расчет равновесия по термодинамическим данным
- •8.2.7 Термодинамический анализ
- •9 Организация химического производства
- •9.1 Химическое производство как система
- •9.2 Моделирование химико-технологической системой
- •9.3 Организация хтп
- •9.3.1 Выбор схемы процесса
- •9.3.2 Выбор параметров процесса
- •9.4 Управление химическим производством
- •10 Процессы и аппараты химического производства
- •10.1 Общая характеристика и классификация процессов
- •10.2 Основные процессы химической технологии и аппаратура для них
- •10.2.1 Гидромеханические процессы
- •10.2.2. Тепловые процессы
- •10.2.3 Массообменные процессы
- •10.3 Химические реакторы
- •10.3.1 Принципы проектирования химических реакторов
- •10.3.2 Классификация химических реакторов
- •10.3.3 Конструкции химических реакторов
- •10.3.4 Устройство контактных аппаратов
- •11 Гомогенные процессы
- •11.1 Характеристика гомогенных процессов
- •11.1.1 Гомогенные процессы в газовой фазе
- •11.1.2 Гомогенные процессы в жидкой фазе
- •11. 2 Основные закономерности гомогенных процессов
- •12 Гетерогенные процессы
- •12.1 Характеристика гетерогенных процессов
- •12.2 Процессы в системе газ- жидкость (г-ж)
- •12.3 Процессы в системе жидкость – твердое (ж-т)
- •12.4 Процессы в системе газ – твердое (г – т)
- •12.5 Процессы в бинарных твердых, двухфазных жидких и многофазных системах
- •12.6 Высокотемпературные процессы и аппараты
- •12.7 Каталитические процессы и аппараты
- •12.7.1. Сущность и виды катализа.
- •12.7.2 Свойства твердых катализаторов и их изготовление
- •12.7.3 Аппаратурное оформление каталитических процессов
- •13 Важнейшие химические производства
- •13.1 Производство серной кислоты
- •13.1.1Применение
- •13.1.2Технологические свойства серной кислоты
- •13.1.3 Способы получения
- •13.1.4 Сырье для производства серной кислоты
- •13.1.5 Общая схема сернокислотного производства
- •13.1.6 Контактный способ производства серной кислоты
- •13.1.7 Производство серной кислоты из серы
- •13.2 Технология связанного азота
- •13.2.1. Сырьевая база азотной промышленности
- •13.2.2. Получение технологических газов
- •13.2.3 Синтез аммиака
- •13.2.4 Производство азотной кислоты
- •13. 3 Технология минеральных удобрений
- •13.3.1 Классификация минеральных удобрений
- •13.3.2 Типовые процессы солевой технологии
- •13.3.3 Разложение фосфатного сырья и получение фосфорных удобрений
- •13.3.3.1 Производство фосфорной кислоты
- •13.3.3.2 Производство простого суперфосфата
- •13.3.3.3 Производство двойного суперфосфата
- •13.3.3 4 Азотнокислотное разложение фосфатов
- •13.3.4 Производство азотных удобрений
- •13.3.4.1 Производство аммиачной селитры
- •13.3.4.2 Производство карбамида
- •13.3.4.3 Производство сульфата аммония
- •13.3.4.4 Производство нитрата кальция.
- •13.3.4.5 Производство жидких азотных удобрений
- •13.3.5 Производство калийных удобрений
- •13.3.5.1 Общая характеристика
- •13.3.5.2 Сырье
- •13.3.5.3 Получение хлористого калия
- •13.3.5.4 Получение сульфата калия.
- •13.4 Производство силикатных материалов
- •13.4.1 Общие сведения о силикатных материалах
- •13.4.2 Типовые процессы технологии силикатных материалов
- •13.5 Производство вяжущих материалов.
- •13.5.1 Общая характеристика и классификация
- •13.5.2 Производство портланд-цемента
- •13.5.3 Производство воздушной извести
- •13.6 Производство стекла
- •13.6.1 Состав и классификация стекол
- •13.6.2 Процесс производства стекла
- •13.7 Производство керамических материалов
- •13.7.1 Общая характеристика и классификация материалов
- •13.7.2 Производство строительного кирпича
- •13.7.3 Производство огнеупоров
- •13.8. Электрохимические производства
- •13.8.1 Электролиз водных растворов хлористого натрия
- •13.8.1.1. Электролиз раствора хлористого натрия в ваннах со стальным катодом и графитовым анодом
- •13.8.1.2 Электролиз растворов хлористого натрия в ваннах с ртутным катодом и графитовым анодом
- •13.8.2 Производство соляной кислоты
- •13.8.3 Электролиз расплавов. Производство алюминия
- •13.8.3.1 Производство глинозема
- •13.8.3.2 Производство алюминия
- •13.9 Металлургия
- •13.9.1 Руды и способы их переработки
- •Общая схема переработки железной руды
- •13.9.2 Производство чугуна
- •13.9.3. Производство стали.
- •13.9.4. Производство меди
- •13.10 Химическая переработка топлива
- •13.10.1 Коксование каменных углей
- •Общая схема коксохимического производства
- •13.10.2. Переработка жидких топлив
- •13.10.3. Производство и переработка газообразного топлива
- •13.11 Основной органический синтез
- •13.11.1 Сырье и процессы оос
- •13.11.2 Синтез метилового спирта
- •13.11.3 Производство этанола
- •13.11.4. Производство ацетилена
- •13.11.5 Производство формальдегида
- •13.11.6. Получение карбамидо-формальдегидных смол.
- •13.11.7 Производство ацетальдегида
- •13.11.8 Производство уксусной кислоты и ангидрида
- •13.12 Производство мономеров
- •13.12.1 Полимеризационные мономеры
- •13.12.2 Производство поливинилацетатной дисперсии
- •13.13 Высокомолекулярные соединения
- •13.12.1 Производство целлюлозы
- •13.13.2 Производство химических волокон
- •13.12.3 Производство пластических масс
- •13.12.4 Получение каучука и резины
13.3.3.2 Производство простого суперфосфата
Сущность производства простого суперфосфата состоит в превращении природного фторапатита, нерастворимого в воде и почвенных растворах, в растворимые соединения, преимущественно в монокальцийфосфат Са(Н2РО4)2. Процесс разложения может быть представлен следующим суммарным уравнением:
2Ca5F(PO4)3+7H2SO4+3H2O=3Са(Н2РО4)2*Н2О]+ 7[CaSO4 *0,5H2O]+2HF; ΔН— — 227,4кДж (1)
Практически в процессе производства простого суперфосфата разложение протекает в две стадии. На первой стадии около 70% апатита реагирует с серной кислотой. При этом образуются фосфорная кислота и полугидрат сульфата кальция:
Ca5F(PO4)3+5H2SO4 +2,5H2O = 5 (CaSO4-0,5H2O) +3H3PO4 +HF (2)
Эта стадия представляет собой химическое растворение, осложненное осаждением на зернах фосфата плотных, или сравнительно рыхлых пористых корок сульфата кальция. Плотные корки сильно затрудняют диффузию жидкой фазы к поверхности фосфата и поэтому реакция замедляется; рыхлые корки замедляют реакцию в меньшей степени. Структура образующейся корки обусловлена скоростью кристаллизации твердой фазы, зависящей главным образом от пересыщения раствора сульфатом кальция, которое определяется в свою очередь концентрацией серной кислоты, температурой и другими факторами.
Выкристаллизовавшиеся микрокристаллы сульфата кальция образуют структурную сетку, удерживающую большое количество жидкой фазы, и суперфосфатная масса затвердевает (схватывается). Первая стадия процесса разложения начинается сразу после смешения реагентов и заканчивается в течение 20—40 мин в суперфосфатных камерах.
После полного израсходования серной кислоты начинается вторая стадия разложения, в которой оставшийся апатит (30%) разлагается фосфорной кислотой.
Образующийся монокальцийфосфат в отличие от сульфата кальция не сразу выпадает в осадок. Он постепенно насыщает раствор фосфорной кислоты, после чего начинает выкристаллизовываться в виде Са(Н2РО4)2 • Н2О. Реакция (2) протекает значительно медленнее, чем реакция (1), что объясняется низкой активностью фосфорной кислоты и кристаллизацией твердых фаз. Она начинается в суперфосфатных камерах и длится еще в течение 5—20 сут хранения суперфосфата на складе. После дозревания на складе разложение фторапатита считают практически законченным, хотя в суперфосфате еще остается небольшое количество неразложившегося фосфата и свободной фосфорной кислоты.
Функциональная схема получения простого суперфосфата представлена на рис.5. Основные процессы проходят на первых трех стадиях: смешения сырья, образования и затвердевания суперфосфатной пульпы, дозревания суперфосфата на складе.
Для обеспечения высокой скорости гетерогенного процесса сернокислотного разложения фосфатов используют ряд технологических приемов:
Серную кислоту для разложения фосфатов берут в небольшом избытке (в 1,07—1,14 раза больше стехиометрического количества).
Используют 68,5—69,5%-ную серную кислоту: такая концентрация является оптимальной для кристаллизации сульфата кальция и дальнейшего разложения ф
осфатов.
Рис. 5. Функциональная схема производства простого суперфосфата
3. Температуру в суперфосфатной камере поддерживают на уровне 115—120°С, что обеспечивает достаточную скорость разложения и в то же время позволяет получить продукт (суперфосфат), обладающий хорошими физическими свойствами.
Для получения товарного продукта более высокого качества суперфосфат после дозревания подвергают нейтрализации твердыми добавками (известняком, фосфоритной мукой и т. п.) и гранулируют.
На рис.15.13. изображена технологическая схема получения простого суперфосфата непрерывным способом с использованием кольцевой вращающейся камеры. Серную кислоту, подогретую до 55—65°С, из напорного бака 4 направляют в кислотный смеситель 2, где разбавляют водой до образования 68-68,5%-ной H2SO4. Через щелевой расходомер 3 серную кислоту непрерывно подают в смеситель 25, где в течение нескольких минут смешивают с апатитовым концентратом, поступающим из бункера через весовой дозатор 26. Образующаяся при смешении густая сметанообразная пульпа при температуре 110—115°С непрерывно поступает в суперфосфатную камеру 24 Здесь продолжается начавшаяся в смесителе реакция разложения фосфата серной кислотой. После затвердевания суперфосфатную массу вырезают ножами фрезера 22. Срезанный суперфосфат через центральную (разгрузочную) трубу 23 удаляют из камеры и ленточным транспортером 21 подают на склад. С транспортера суперфосфат попадает на разбрасыватель 20, разбивающий комки суперфосфата. При этом часть влаги испаряется и суперфосфат охлаждается.
О
тходящие
из камеры фторсодержащие газы поступают
на очистку в
абсорбционные камеры, орошаемые водой
или разбавленной кремне-фтористоводородной
кислотой. При циркуляции в камерах
получается
8—10%-ный раствор H2SiF6,
который отводят на переработку.
Суперфосфат выдерживают в течение 5—20 сут на складах, где он хранится в кучах высотой 6—10 м. В течение этого времени с помощью грейферного крана 19 суперфосфат 2—3 раза перелопачивают
для охлаждения.
Вызревший суперфосфат смешивают с сухим известняком для нейтрализации, отсеивают от крупных частиц на грохоте 8 и измельчают в валковой дробилке 9. Затем в барабанном грануляторе 17 порошкообразный суперфосфат смешивают с ретуром , увлажняют и при вращении барабана окатывают в гранулы округлой формы.
Влажные гранулы сушат в барабанной сушилке 16 топочными газами. Высушенный продукт классифицируют на виброгрохоте 12. Фракция гранул размером 1—4 мм является товарным продуктом. Его охлаждают воздухом в аппарате 14 с псевдоожиженным слоем твердой фазы и подают на затаривание. Мелкую фракцию вновь направляют на грануляцию, а крупную измельчают в дробилке 15 и возвращают элеватором на грохот.
Простой гранулированный суперфосфат — дешевое фосфорное удобрение. Однако он имеет существенный недостаток — низкое содержание основного компонента (19—21% усвояемого Р2О5) и высокую долю балласта — сульфата кальция. Его производят, как правило, в районах потребления удобрений, так как экономичнее доставлять концентрированное фосфатное сырье к суперфосфатным заводам, чем перевозить на дальние расстояния низкоконцентрированный простой суперфосфат
Получить концентрированное фосфорное удобрение можно, заменив серную кислоту при разложении фосфатного сырья на фосфорную. На этом принципе основано производство двойного суперфосфата.