Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция 1. Термодинамическая система.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
70.3 Кб
Скачать

Лекция 1 Термодинамика и кинетика биологических процессов

План

1 Термодинамические системы

2 Классификация термодинамических систем

3 Стационарное состояние биологических систем

4 Первый и второй законы термодинамики

5 Энтропия в открытых системах

6 Теорема Пригожина

7 Кинетика биопроцессов

8 Механизмы теплообразования и регуляции в живых системах

1 Термодинамическая система

Термодинамическая система — это некая физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям. Для термодинамических систем справедливы законы термодинамики.

Описание

Для описания термодинамической системы вводят так называемые термодинамические величины — набор физических величин, значения которых определяют термодинамическое состояние системы. Примерами термодинамических величин являются:

  • температура

  • давление

  • объём

  • внутренняя энергия

  • энтропия

  • энтальпия

  • свободная энергия Гельмгольца

  • энергия Гиббса

Если термодинамическое состояние системы не меняется со временем, то говорят, что система находится в состоянии равновесия. Строго говоря, термодинамические величины, приведённые выше, могут быть определены только в состоянии термодинамического равновесия.

2 Классификация термодинамических систем

Термодинамические системы подразделяются на однородные по составу (например, газ в сосуде) и неоднородные (вода и пар или смесь газов в сосуде).

Выделяют также изолированные системы, то есть системы, которые не обмениваются с окружающей средой ни энергией, ни веществом, и закрытые системы, которые обмениваются со средой только энергией, но не обмениваются веществом. Если же в системе происходят обменные процессы с окружающей средой, то её называют открытой.

3 Стационарное состояние открытой системы

Состояние системы называется стационарным, если величина энтропии не изменяется во времени, то есть dS = 0. Это возможно, когда производство энтропии в системе полностью компенсируется энтропией, выходящей из системы (dSi = - dSe).

Стационарное состояние открытой системы имеет сходство с термодинамическим равновесием, поскольку оба состояния характеризуются устойчивостью характеризующих их параметров состояния. Но стационарное состояние существенно отличается от состояния равновесия, поскольку обменивается энергией с окружающей средой: количество свободной энергии в системе необходимо поддерживать. Энтропия системы в стационарном состоянии - стабильная, но не максимальная. Градиенты и потоки сохраняются в системе.

Основная характеристика стационарного состояния определена теоремой Пригожина, согласно которой производство энтропии в стационарном состоянии минимально (dS=min). Это означает, что система рассеивает минимальную энергию в среду и нуждается в минимальном поступлении свободной энергии для поддержания своего состояния.

Теорема Пригожина объясняет устойчивость стационарных состояний в открытых системах. Если система выходит из этого состояния самопроизвольно, происходит увеличение энтропии. В результате в системе возникают процессы, которые стремятся возвратить её в стационарное состояние. Многие физиологические параметры являются достаточно стабильными. Их стационарный уровень регулируют специальные физиологические механизмы. В качестве примера поддержания стационарного состояния можно привести терморегуляцию организма. Постоянство температуры обеспечивается поддержанием баланса теплопродукции и теплоотдачи. В результате температура тела поддерживается неизменной, несмотря на колебания внешней температуры. Механизмы, с помощью которых живые организмы поддерживают гомеостаз, то есть статические условия своей внутренней среды, изучает физиология.