
- •Курс лекций по «специальным чугунам»
- •Глава 1. Классификация специальных чугунов. Особенности процессов их легирования и термической обработки
- •Классификация специальных чугунов
- •1.2. Особенности легирования
- •1.2.1. Особенности жидкого состояния
- •1.2.2. Первичные фазы и распределение легирующих элементов в чугунах
- •III группа
- •1.3. Особенности термической обработки
- •1.3.1. Изотермическая закалка
- •1.3.2. Нормализация
- •1.3.3. Улучшение
- •Глава 2. Отливки из коррозионностойких чугунов
- •2.1. Процессы коррозии в чугуне
- •2.2. Отливки из хромистых чугунов
- •2.2.1. Влияние химического состава на коррозионную стойкость
- •2.2.2. Марки хромистых коррозионностойких чугунов, их основные свойства, области применения
- •2.3 Отливки из высококремнистых чугунов
- •2.3.1 Влияние химического состава на структуру и свойства
- •2.3.2 Марки кремнистых коррозионностойких чугунов, их основные свойства, области применения
- •Глава 3. Отливки из жаростойких чугунов
- •3.1. Общая характеристика
- •3.2. Отливки из алюминиевых чугунов
- •3.2.1. Формирование структуры
- •3.2.2. Марки жаростойких алюминиевых чугунов, их основные свойства, области применения
- •3.3. Отливки из хромистых жаростойких чугунов
- •3.3.1. Влияние хрома на жаростойкость чугунов
- •3.3.2. Марки жаростойких хромистых чугунов, их основные свойства, области применения
- •3.4. Отливки из кремнистых чугунов
- •3.4.1. Влияние кремния на структуру и свойства чугунов
- •3.4.2. Марки кремнистых жаростойких чугунов, их основные свойства, области применения
- •3.5. Отливки из комплексно-легированных жаростойких чугунов
- •Глава 4. Отливки из жаропрочных чугунов
- •4.1. Общая характеристика
- •4.2. Марки жаропрочных чугунов, их основные свойства, области применения
- •Глава 5. Отливки из износостойких чугунов
- •5.1. Процессы абразивного изнашивания
- •5.2. Влияние химического состава на свойства чугунов
- •5.3. Влияние структуры на износостойкость
- •5.3.1. Влияние карбидной фазы
- •5.3.2. Влияние металлической основы
- •5.4. Влияние термической обработки
- •5.5. Марки износостойких чугунов, их основные свойства, области применения
- •5.6. Комплексно-легированные белые износостойкие чугуны
- •Глава 6. Отливки из антифрикционных чугунов
- •6.1. Общая характеристика
- •6.2. Марки антифрикционных чугунов, их основные свойства, области применения
- •Глава 7. Чугуны для отливки валков
- •7.1. Классификация валков
- •7.2. Виды валков, их химический состав, свойства и применение
- •Химический состав рабочего слоя валков
- •7.3. Влияние легирующих элементов на свойства рабочего слоя двухслойных валков
- •Глава 8. Технологические особенности изготовления отливок из специальных чугунов
- •8.1. Особенности плавки и заливки форм
- •8.2. Литейные свойства специальных чугунов
- •8.3. Особенности технологии формы в зависимости от свойств специальных чугунов
- •8.4. Механическая обработка отливок
1.2.2. Первичные фазы и распределение легирующих элементов в чугунах
Первичной структуре принадлежит решающее влияние в формировании свойств чугунов. Влияние первичной структуры на процесс формирования свойств чугунов не утрачивает своего значения и при вторичных превращениях, происходящих при остывании отливки или термической обработки.
Первичная кристаллизация легированных чугунов может протекать с образованием избыточных кристаллов твёрдого раствора аустенита (феррита) или высокоуглеродистых фаз – цементита (Fe3C), комплексных и собственных карбидов легирующих элементов, графита. Последовательность возникновения перечисленных фаз и их количество зависит от состава чугунов и степени переохлаждения кристаллизующегося расплава. Заключительным этапом первичной кристаллизации является эвтектическая кристаллизация.
Формирование литой структуры легированных чугунов завершается процессами, протекающими в твёрдом состоянии (вторичная кристаллизация). При этом происходит выделение избыточных фаз из твёрдых растворов, графитизация высокоуглеродистых структур, эвтектоидное превращение, упорядочение феррита и т. д.
В легированных чугунах, в которых природа высокоуглеродистой фазы подвержена влиянию не только введённых добавок, но и кинетических факторов, особенно сложным является определение направления процесса графитизации. В основе процессов графитизации лежат законы, управляющие взаимодействием атомов компонентов легированного чугуна. Стимулирование при легировании чугунов межатомных связей типа C-C должно способствовать графитообразованию, а типа C-Э – карбидообразованию. Поэтому, ещё в жидком состоянии, особенно в предкристаллизационном периоде, закладываются условия, во многом предопределяющие природу образующихся первичных фаз.
Относительно легко можно определить характер влияния вводимых присадок, если отличительной особенностью их является высокая способность к карбидообразованию. Физическая сущность процессов карбидообразования исследована довольно тщательно и установлена их связь с положением элементов в периодической системе Д.И. Менделеева.
Элементы Ti, V, Nb, Zr, Hf образуют карбиды по типу фаз внедрения с формулами MC и M2C (TiC, VC, Nb2C и др.). Такие карбиды имеют высокую температуру плавления и температуру образования, высокую устойчивость к диссоциации и растворению, широкую область гомогенности по углероду с низкой способностью к насыщению другими элементами. Образование карбидов такого типа определяется главным образом концентрацией соответствующего легирующего элемента в чугуне. Для полного перехода высокоуглеродистой фазы чугунов в специальный карбид требуется относительно большая концентрация легирующего элемента в сплаве (отношение к углероду от 1:4 до 1:9). Практическая целесообразность чугунов с высокими концентрациями таких элементов ещё не доказана (хотя есть чугуны с 6,0 % V), а эффективность ввода легирующего элемента из этой группы подтверждена только до концентраций 1,0-2,0. При таких концентрациях, образующиеся в расплаве карбиды подобного рода могут способствовать графитообразованию в чугунах, оказывая зародышевое действие непосредственно на графитовую фазу, либо косвенно инициируя возникновение кристаллов аустенита (феррита).
Более сложным оказывается влияние на природу высокоуглеродистой фазы чугунов других карбидообразующих элементов, способных растворяться как в цементите, трансформируя его до сложного карбида (например, Fe3C, (Fe, Cr)3C, (Fe, Cr)7C3), так и в твёрдых растворах первичных фаз (аустените). К таким элементам относятся Mn и Cr.
Карбидообразующие элементы (Cr, Mn, Ti, V, Mo, Nb и др.) преимущественно сосредоточены либо в избыточном цементите заэвтектического чугуна, либо в карбидах. Распределение их как в цементите, так и в ледебурите оказывается сложным.
Графитизирующие элементы (Si, Ni, Cu, Al и др.) концентрируются в избыточных кристаллах аустенита доэвтектического чугуна или в эвтектической жидкости заэвтектического сплава.
Для элементов, имеющих меньшее сродство к углероду, характерным является их обратная ликвация в аустените, т. е. возникающие первыми осевые участки кристаллов обогащены легирующими элементами. Таким же оказывается распределение этих легирующих элементов и в графито-аустенитных колониях чугуна. Некарбидообразующие элементы, концентрируясь в твёрдом растворе, обогащают оставшуюся часть жидкости углеродом и повышают тем самым его термодинамическую активность, способствуя возникновению аустенитно-графитовой эвтектики.
Степень неоднородности внутрифазового распределения элементов зависит от концентрации их в чугуне и условий кристаллизации отливок. Однако, при равных условиях они определяются соотношением энергий межатомного взаимодействия среди Fe -Э и Э - C связей. Чем сильнее отличие в строении и размерах атомов карбидообразующего элемента от атомов железа, тем меньше степень легированности ими цементита.
Например, в равновесных условиях затвердевания отливки хром замещает Fe в Fe3C до 25 % ат., Mo до 1 % ат., W до 0,5 % ат., V и Ti до сотых долей процентов. Формула таких карбидов (Fe, Э)3C:(Fe, Cr)3C и др. Структура карбидов Mo и W ещё более сложная (Fe, Mo)2C, (Fe, W)2C.
Из всех карбидообразующих элементов только Cr и Mn применяются в больших количествах для получения специальных чугунов. В марганцевых (8,0-14,0 % Mn) и хромистых (> 10 % Cr) чугунах первичными высокоуглеродистыми фазами всегда оказываются карбиды (Fe, Mn)3C, (Fe, Cr)3C, (Fe, Cr)7C3. Концентрация легирующих элементах в первичных карбидах (Fe, Mn)3C и (Fe, Cr)7C3 может изменяться в широких пределах в зависимости от их общего содержания в чугуне (табл. 1.3).
Возникновение таких карбидов всегда сопровождается значительным обеднением легирующей примесью пограничных с ним зон твёрдого раствора.
Характер распределения легирующих элементов не только регулирует процессы формирования первичных структур отливок, но и в значительной степени наследуется вторичными превращениями в твёрдом состоянии. Кроме этого, литая структура отливок из легированных чугунов может существенным образом отличаться по своим свойствам от однотипных микроструктур, полученных при термической обработке. Причина этого в различных формах и распределениях структурных составляющих, в природе высокоуглеродистых фаз и твёрдых металлических растворах.
Таблица 1.3
Распределение Mn и Cr в чугунах специального назначения
Mn, % |
Cr, % |
||
В карбиде (Fe, Mn)3C, % от общего |
В немагнитном Mn-Ni-Cu чугуне , всего |
В карбиде (Cr, Fe)7C3, % от общего |
В износостойком карбидном чугуне , всего |
19,6 |
8,3 |
26,2 |
10,5 |
26,3 |
12,2 |
39,1 |
18,0 |
29,1 |
14,3 |
46,8 |
24,6 |
30,2 |
15,8 |
53,7 |
28,5 |
Известный ряд элементов по относительной интенсивности их влияния на графитизацию выглядит следующим образом:
Si, Al С, Ti, Ni, Сu Р, Zr, |Nb|, W, Mn, Cr, V, S, Mg, Се, Те, В
Элементы, расположенные слева от ниобия, считаются графитизирующими, а справа - антиграфитизирующими. Эффект их воздействия возрастает с удалением от Nb, влияние которого на графитизацию принято за нулевое. Основанием для представления данного ряда послужило изменение экспериментальной глубины отбела чугуна, по которым рассчитаны коэффициенты в уравнении константы графитизации (Кг):
Kr=C [Si - 0,2(Мn- 1,75 - 0,3) + 0,1P+0,4Ni - 1,2Сr + 0,5Аl + 0,2Cu + 0,4Ti - 0,4Mo-2V-8Mg]
Кроме того, для классификации химических элементов как графитизаторов или антиграфитизаторов эвтектической кристаллизации используется их влияние на температуру эвтектического превращения по стабильной диаграмме Fe-C.
Однако эти оценки зависят от точности проведенных измерений, чистоты сплавов и во многих случаях не являются однозначными. Например, для W, Mo, S установлен лишь характер влияния на температуру эвтектического превращения. Необходимо также учитывать, что влияние элементов на температуру критических точек диаграммы состояния Fe-C и глубину отбела зависит от их концентрации и содержания углерода в чугуне.
Если рассматривать влияние химических элементов (Xj) на степень графитизации в системе Fe-C-Xj, то в предложенном расположении есть ряд несоответствий, прежде всего касающихся элементов, образующих прочные карбиды (Ti, Zr, Nb).
В связи с этим представляет интерес оценка влияния химических элементов на графитизацию чугуна по их воздействию непосредственно на процесс графитизации.
Формирование кристалла графита в чугуне условно можно представить двумя стадиями: перемещением атомов углерода и осаждением их на поверхность растущего кристалла. Подвижность в расплаве атомов углерода пропорциональна его термодинамической активности (ас), которая будет зависеть не только от его собственной концентрации, но и от других компонентов.
Движущая сила осаждения атомов углерода также зависит от их термодинамической активности:
GV = R T ln ac
где: GV - изменение объемной энергии кристалла;
R - газовая постоянная;
Т - температура.
В многокомпонентных системах активность и соответственно коэффициент активности атомов углерода c(j) в системе Fe-C-Xj можно выразить через параметры взаимодействия первого е и второго г порядка:
lg f C(j) =e cc[c] + ej[X j] + r cc[c]2 + ri c[X j]2
где ас(0) - коэффициент активности атомов углерода в жидком разбавленном растворе железа;
[С], [Xj] - содержание углерода и анализируемого j химического элемента в процентах по массе.
Из приведенного уравнения следует, что коэффициент активности j элемента в многокомпонентной системе можно рассчитывать по данным бинарных систем.
Таким образом, оценка графитизирующей способности элементов может быть проведена по влиянию этих элементов на активность атомов углерода в расплаве чугуна.
О возможности оценки графитизирующей способности химических элементов по их влиянию на активность атомов углерода указывалось в работах Н.Г. Гиршовича и А.А. Жукова.
Для качественной оценки графитизирующей способности химических элементов в системе Fe-C-Xj можно воспользоваться значениями параметров взаимодействия первого порядка ecj. Если ecj больше нуля, то введение j-элемента будет увеличивать диффузионную подвижность и активность атомов углерода, т.е. способствовать росту графита, причем тем в большей степени, чем больше значение ecj. И наоборот, если ecj меньше нуля, то введенный химический элемент будет препятствовать росту кристалла графита. Степень его антиграфитизирующего влияния зависит от величины параметра взаимодействия.
В табл. 1.4 приведены значения параметров взаимодействия углерода и ряда химических элементов ecj в порядке убывания.
Таблица 1. 4
Элемент |
H |
B |
C |
N |
Si |
P |
S |
Al |
Cu |
Ni |
есj 100 |
67 |
24 |
14 |
11 |
8 |
5 |
4,5 |
4,3 |
1,6 |
1,2 |
Окончание табл. 1.4
Co |
W |
Mo |
Mn |
Cr |
Mg |
Nb |
V |
Ca |
Ti |
Zr |
O |
0,5 |
-0,6 |
-0,8 |
-1,2 |
-2,2 |
-2,8 |
-6 |
-7,7 |
-9,7 |
-16 |
-20 |
-36 |
Видно, что по значениям параметра взаимодействия Nb, Ti, Zr могут быть отнесены к карбидообразующим.
А водород, бор, азот и сера увеличивают активность и диффузионную подвижность атомов углерода и по этому признаку должны были бы обладать графитизирующими свойствами. Однако, это противоречит практике. Известно, что находящиеся в чугуне Н, В, N, S повышают склонность чугуна к отбелу. Видимо, оценка химических элементов только по влиянию на термодинамическую активность и диффузионную подвижность атомов углерода в ряде случаев недостаточна. Необходимо учитывать поведение атомов (ионов) вводимых в чугун элементов по отношению к появившимся в нем зародышам графита. Судя по значениям параметров взаимодействия, элементы Н, В, N, S способствуют
зарождению кристаллов графита, повышая активность углерода, а затем, видимо, начинают препятствовать их росту. Атомы этих элементов имеют малые размеры и большую диффузионную подвижность, поэтому они могут легко адсорбироваться на зародышах графита, блокируя их дальнейший рост. В этом смысле элементы Н, В, N, S, по-видимому, близки кислороду, который замедляет диффузионную подвижность атомов углерода, но одновременно, являясь поверхностно-активным элементом, может адсорбироваться на зародышах графита. Необходимо также учитывать возможность дезактивации этими элементами подложек для кристаллов графита.
Такое двойственное поведение в расплаве чугуна Н, В, N, S может быть причиной наблюдающихся в ряде случаев аномальных явлений. Например, в работе [6] экспериментальным путем установили, что при концентрации до 0,2 % сера способствует графитизации, а при большем содержании приводит к ее подавлению.
Таким образом, химические элементы, вводимые в чугун, можно разделить на три группы. К первой необходимо отнести элементы, каждый из которых в системе Fe-C-Xj, повышая активность атомов углерода и их диффузионную подвижность, способствует графитизации чугуна. Ко второй группе относятся элементы, каждый из которых в аналогичной системе уменьшает активность атомов углерода, снижает его диффузионную подвижность и тем самым препятствует графитизации чугуна. К третьей группе можно отнести такие элементы, которые потенциально обладают свойствами элементов I группы, но проявляют себя в чугуне как антиграфитизаторы, т.е. аналогично химическим элементам II группы.
Следовательно, химические элементы, для которых известно значение параметра взаимодействия еД по степени их возможного влияния на процесс графитизации могут быть расположены в следующий ряд:
С, Si, P, Al, Cu, Ni, Co W, Mo, Mn, Cr, Mg, Nb, V, Ca, Ti, Zr, О
I группа II группа
Н, В, N, S