
- •Курс лекций по «специальным чугунам»
- •Глава 1. Классификация специальных чугунов. Особенности процессов их легирования и термической обработки
- •Классификация специальных чугунов
- •1.2. Особенности легирования
- •1.2.1. Особенности жидкого состояния
- •1.2.2. Первичные фазы и распределение легирующих элементов в чугунах
- •III группа
- •1.3. Особенности термической обработки
- •1.3.1. Изотермическая закалка
- •1.3.2. Нормализация
- •1.3.3. Улучшение
- •Глава 2. Отливки из коррозионностойких чугунов
- •2.1. Процессы коррозии в чугуне
- •2.2. Отливки из хромистых чугунов
- •2.2.1. Влияние химического состава на коррозионную стойкость
- •2.2.2. Марки хромистых коррозионностойких чугунов, их основные свойства, области применения
- •2.3 Отливки из высококремнистых чугунов
- •2.3.1 Влияние химического состава на структуру и свойства
- •2.3.2 Марки кремнистых коррозионностойких чугунов, их основные свойства, области применения
- •Глава 3. Отливки из жаростойких чугунов
- •3.1. Общая характеристика
- •3.2. Отливки из алюминиевых чугунов
- •3.2.1. Формирование структуры
- •3.2.2. Марки жаростойких алюминиевых чугунов, их основные свойства, области применения
- •3.3. Отливки из хромистых жаростойких чугунов
- •3.3.1. Влияние хрома на жаростойкость чугунов
- •3.3.2. Марки жаростойких хромистых чугунов, их основные свойства, области применения
- •3.4. Отливки из кремнистых чугунов
- •3.4.1. Влияние кремния на структуру и свойства чугунов
- •3.4.2. Марки кремнистых жаростойких чугунов, их основные свойства, области применения
- •3.5. Отливки из комплексно-легированных жаростойких чугунов
- •Глава 4. Отливки из жаропрочных чугунов
- •4.1. Общая характеристика
- •4.2. Марки жаропрочных чугунов, их основные свойства, области применения
- •Глава 5. Отливки из износостойких чугунов
- •5.1. Процессы абразивного изнашивания
- •5.2. Влияние химического состава на свойства чугунов
- •5.3. Влияние структуры на износостойкость
- •5.3.1. Влияние карбидной фазы
- •5.3.2. Влияние металлической основы
- •5.4. Влияние термической обработки
- •5.5. Марки износостойких чугунов, их основные свойства, области применения
- •5.6. Комплексно-легированные белые износостойкие чугуны
- •Глава 6. Отливки из антифрикционных чугунов
- •6.1. Общая характеристика
- •6.2. Марки антифрикционных чугунов, их основные свойства, области применения
- •Глава 7. Чугуны для отливки валков
- •7.1. Классификация валков
- •7.2. Виды валков, их химический состав, свойства и применение
- •Химический состав рабочего слоя валков
- •7.3. Влияние легирующих элементов на свойства рабочего слоя двухслойных валков
- •Глава 8. Технологические особенности изготовления отливок из специальных чугунов
- •8.1. Особенности плавки и заливки форм
- •8.2. Литейные свойства специальных чугунов
- •8.3. Особенности технологии формы в зависимости от свойств специальных чугунов
- •8.4. Механическая обработка отливок
5.3. Влияние структуры на износостойкость
Одним из важнейших факторов, определяющих сопротивление металлических сплавов изнашиванию, является их структурное состояние, а также свойства, взаимное расположение, количественное соотношение и характер связи отдельных составляющих структуры.
Главными структурными составляющими белых износостойких чугунов являются карбиды и металлическая основа.
Высокой
изностойкостью обладают отливки из
белых чугунов со структурой мартенсита,
нестабильного при рабочих нагрузках
аустенита и карбидами типа МС, М7С3.
Сопротивление изнашиванию отливок из легированных сплавов обычно характеризуется двумя главными параметрами: способностью металлической матрицы и карбидной фазы претерпевать превращения в поверхностных слоях, приспосабливаться к условиям трения и иметь минимальный износ.
В высоколегированных сплавах с большим количеством карбидной фазы матрица занимает по объему до 90 %. Если исходить из теории износа, предложенной П. Н. Львовым, то необходимо стремиться к большему насыщению сплава твердыми карбидными частицами, так как в этом случае зернам абразива будет труднее выдавливать в сплаве канавки. Но в то же время это соотношение должно обеспечивать хорошую связь между фазами и способность матрицы удерживать карбиды в процессе изнашивания.
Современные белые износостойкие чугуны представляют собой многокомпонентные системы с целым набором структурных составляющих. При этом, если износостойкость стальных изделий перлитного или мартенсито-аустенитного классов определяется структурой и уровнем твердости металлической матрицы, то износостойкость отливок белого чугуна в первую очередь оказывается связанной с наличием, количеством и типом (природой) избыточных карбидных фаз.
5.3.1. Влияние карбидной фазы
Тип и морфология. В чугунах, содержащих до 7 % Сr, образуется легированный хромом цементит (Fe,Cr)3C. Хотя по мере увеличения содержания хрома в чугуне до 7 % микротвердость карбидов возрастает с HV 800 до HV 1100, износостойкость чугуна с карбидами цементитного типа при испытании по методу Штауффера в условиях гидроабразивного изнашивания минимальна.
Карбиды цементитного типа в чугуне с содержанием до 7 % Сr образуют жесткий каркас ледебуритной эвтектики. Для такого жесткого каркаса карбидов условия хрупкого разрушения при превышении предельных величин по скорости нагружения или энергии удара абразивной частицы достигаются раньше, чем для эвтектики с разветвленными диспергированными карбидами (Fe,Cr)7С3. При повышении содержания хрома свыше 8 % в чугуне с 3 % С количество карбидов цементитного типа уменьшается за счет образования карбидов хрома с более высокой микротвердостью и износостойкость чугуна увеличивается. Максимальную износостойкость имеют чугуны с карбидами (Fe,Cr)7С3 (содержание хрома в чугуне свыше 11 - 13 %) благодаря повышенной микротвердости этих карбидов и разветвленному строению в эвтектике.
Увеличение количества карбидов повышает износостойкость белых чугунов, если тип карбидов при этом не меняется. Так, в чугуне, содержащем 13 % Сr и 3,2 - 3,4 % С, количество карбидов М7С3 составляет ~30 %. Дальнейшее увеличение содержания углерода и количества карбидов не приводит к росту износостойкости, так как в структуре появляются карбиды M3C; кроме того, в чугунах заэвтектических составов часть карбидов М7С3 кристаллизуется в виде вытянутых хрупких шестигранных призм.
Количество карбидов в структуре чугуна тем больше, чем выше содержание углерода. Тип образующихся карбидов определяется соотношением содержаний хрома и углерода в чугуне. Соответственно износостойкость чугуна определяется содержанием хрома и его соотношением с содержанием углерода. При этом максимальную износостойкость имеют чугуны, содержание углерода в которых соответствует эвтектическому, а соотношение хрома и углерода обеспечивает образование карбидов типа (Fe,Cr)7С3 и отсутствие карбидов типа (Fе,Сr)3С.
Увеличение размеров карбидных включений снижает износостойкость чугуна. Степень влияния размеров карбидов зависит от условий изнашивания и характеристики абразива, что связано с влиянием этих факторов на формирование напряжений в карбидах и на распределение напряжений между карбидом и металлической основой. Крупные карбидные включения (особенно в мягкой матрице) растрескиваются и выкрашиваются под действием напряжений, создаваемых абразивной частицей, и деформаций основы. Мелкие - передают часть напряжений на металлическую основу и не разрушаются. В относительно «мягких» условиях в чугуне допустимы более крупные карбиды, в более «жестких» по скорости, твердости, остроугольности, массе абразива допустимый размер карбидов уменьшается.
В условиях микрорезания критический размер карбидов составляет 7 - 8 мкм. При увеличении этого размера износостойкость уменьшается скачком.
Ориентировка карбидов по отношению к изнашиваемой поверхности оказывает влияние на износостойкость, так как карбид хрома обладает выраженной анизотропией. Микротвердость карбида Cr7C3 вдоль тригональной оси составляет H50 21000 МПа, а в перпендикулярном направлении - H50 15000 МПа. В чугуне, содержащем 2,5 % С и 12 % Сr, микротвердость карбида (Fe,Cr)7С3 по этим направлениям составляет соответственно , HV 1600 - 1700 и H50 12000 – 13000 МПа. По этой причине, а также благодаря более прочному закреплению карбидов в основе, поверхность трения чугуна с карбидами (Fe,Cr)7С3, ориентированными большой осью перпендикулярно поверхности трения, лучше сопротивляется износу.
Влияние размеров и ориентации карбидов в структуре чугуна особенно существенно в условиях ударно-абразивного изнашивания. В этих условиях большее значение имеет прочность связи карбидов с матрицей и их способность равномерно распределять энергию удара абразивной частицы.