Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7 Первое начало термодинамики.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
44.86 Кб
Скачать

7 Первое начало термодинамики

Первое начало термодинамики, один из двух основных законов термодинамики, представляет собой закон сохранения энергии для систем, в которых существенное значение имеют тепловые процессы. П. н. т. было сформулировано в середине 19 в. в результате работ Ю. Р. Майера, Дж. Джоуля и Г. Гельмгольца(см. Энергии сохранения закон). Согласно П. н. т., термодинамическая система (например, пар в тепловой машине) может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. П. н. т. часто формулируют как невозможность существования вечного двигателя 1-го рода, который совершал бы работу, не черпая энергию из какого-либо источника.

При сообщении термодинамической системе некоторого количества теплоты Q в общем случае происходит изменение внутренней энергии системы DU и система совершает работу А:

Q = DU + A

Уравнение (1), выражающее П. н. т., является определением изменения внутренней энергии системы (DU), так как Q и А — независимо измеряемые величины.

Внутреннюю энергию системы U можно, в частности, найти, измеряя работу системы в адиабатном процессе (то есть при Q = 0): Аад = — DU, что определяет U с точностью до некоторой аддитивной постоянной U0:

U = U + U0

П. н. т. утверждает, что U является функцией состояния системы, то есть каждое состояние термодинамической системы характеризуется определённым значением U, независимо от того, каким путём система приведена в данное состояние (в то время как значения Q и А зависят от процесса, приведшего к изменению состояния системы). При исследовании термодинамических свойств физической систем П. н. т. обычно применяется совместно со вторым началом термодинамики.

Применение первого начала термодинамики к изопроцессам

Среди равновесных процессов, которые происходят с термодинамическими системами, отдельно рассматриваются изопроцессы, при которых один из основных параметров состояния остается постоянным.  Изохорный процесс (V=const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 1), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.    Из первого начала термодинамики (δQ=dU+δA) для изохорного процесса следует, что вся теплота, которая сообщается газу, идет на увеличение его внутренней энергии:    т.к. CV=dUm/dt,    Тогда для произвольной массы газа получим   (1)  Изобарный процесс (p=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, которая параллельна оси V. При изобарном процессе работа газа при увеличения объема от V1 до V2 равна   (2)  и равна площади заштрихованного прямоугольника (рис. 2). Если использовать уравнение Менделеева-Клапейрона для выбранных нами двух состояний, то   и    откуда    Тогда выражение (2) для работы изобарного расширения примет вид   (3)  Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2 —T1 = 1К, то для 1 моль газа R=A, т. е. R численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К. 

В изобарном процессе при сообщении газу массой m количества теплоты    его внутренняя энергия возрастает на величину (т.к. CV=dUm/dt)    При этом газ совершит работу, определяемую выражением (3).  Изотермический процесс (T=const). Изотермический процесс описывается законом Бойля—Мариотта:    Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу, которая расположена на диаграмме тем выше, чем выше температура, при которой происходит процесс.  Исходя из формул для работы газа и уравнения Менделеева-Клайперона найдем работу изотермического расширения газа:    Так как при Т=const внутренняя энергия идеального газа не изменяется:    то из первого начала термодинамики (δQ=dU+δA) следует, что для изотермического процесса    т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:   (4) 

Значит, для того чтобы при расширении газа температура не становилась меньше, к газу в течение изотермического процесса необходимо подводить количество теплоты, равное внешней работе расширения.