
- •1. Рождение и эволюция звезд Звезда ‒ плазменный шар
- •Источники звездной энергии
- •Рождение звезд
- •Эволюция звезд
- •Красные гиганты
- •Завершающий этап эволюции звезды
- •Белые карлики
- •Судьба Солнца
- •Нейтронные звезды
- •Черные дыры
- •2. Галактики История изучения Нашей Галактики
- •Наша Галактика
- •Общее представление о галактиках
- •3. Модель расширяющейся вселенной Релятивистская модель Вселенной
- •Закон Хаббла
- •Эффект Доплера
- •Гипотеза «старения фотона»
- •4. Теория большого взрыва Гипотеза Гамова
- •Первые секунды Вселенной
- •Реликтовое излучение
- •Избыток протонов
- •Рождение и эволюция галактик
- •Что такое расширение Вселенной?
- •Квазары
ТЕМА № 5. ВСЕЛЕННАЯ
ЛЕКЦИЯ
Понятия
Плазма, звезда, красный гигант, белый карлик, нейтронная звезда, «черная дыра», галактика, Метагалактика, «красное спектральное смещение», парсек, квазар.
Ученые
Уильям Гершель, Роберт Джулиус Трюмплер, Эдвин Хаббл, Альберт Эйнштейн, Весто Слайфер, Христиан Доплер, Георгий Антонович Гамов, Арно Пензиас, Роберт Вилсон.
Вопросы
Рождение и эволюция звезд.
Галактики.
Модель расширяющейся Вселенной.
Теория Большого взрыва.
1. Рождение и эволюция звезд Звезда ‒ плазменный шар
Кажется, что звезд на небе – невообразимое количество. На самом деле, невооруженным глазом при самом остром зрении в самую темную ночь можно разглядеть не более 3 000 звезд, а в обоих полушариях – не более 6 000. За сотни лет наблюдений астрономы занесли в каталоги около миллиона звезд.
Чтобы понять, что такое звезда, надо вспомнить, какие существуют состояния вещества. Кроме широко известных твердого, жидкого и газообразного, вещество может находиться еще и в плазменном состоянии, когда существует множество ионов. Ион – заряженный атом. Если на внешней оболочке атома оказывается избыток или недостаток электронов, он становится ионом, соответственно, положительным или отрицательным. Итак, ион ‒ электрически заряженный атом. Если в газе содержится значительная доля ионов, он называется плазмой.
Плазма ‒ ионизированный газ, т.е. газ, в котором положительные ионы и электроны в среднем нейтрализуют друг друга.
Звезда ‒ это плазменный шар.
Источники звездной энергии
Звезды миллиарды лет выделяют в окружающее космическое пространство огромное количество энергии. Современная физика называет два возможных ее источника – гравитационное сжатие и термоядерные реакции.
Для того чтобы понять, каким образом гравитация питает звезды энергией, представим себе, например, свинцовый шарик, который мы держим на высоте H над поверхностью свинцовой плиты. На него со стороны Земли действует гравитационная сила. Шарик обладает энергией, которая в физике называется потенциальной, иными словами, запасенной. По формуле, известной из школьного курса физики, она равна
Ep = mgH,
где Ep – потенциальная энергия, m – масса шарика, g – ускорение свободного падения. Точнее, она выражает значение взаимной энергии двух тел – шарика и Земли. Если мы выпустим шарик из рук, он начнет падать, расстояние до плиты будет уменьшаться и, следовательно, будет уменьшаться его потенциальная энергия. Зато он будет набирать скорость, а значит, наращивать свою кинетическую энергию, иными словами, энергию движения. При этом сумма потенциальной и кинетической энергии – полная механическая энергия системы «Земля-шарик» ‒ будет сохраняться. Об этом говорит важнейший закон механики – закон сохранения полной механической энергии.
Когда шарик упадет на плиту, он не подлетит вверх, а несколько расплющится. Но куда делась полная механическая энергия? Она не исчезла, а перешла в другой вид энергии – во внутреннюю (иногда ее неточно называют тепловой). И шарик, и то место свинцовой плиты, куда он попал, несколько нагреются. Таким образом, гравитация привела к сближению шарика и плиты и к их нагреванию.
Рождение звезд
Представим себе в просторах космического пространства огромное облако пыли и газа, допустим, по размерам во много раз превышающее Солнечную систему. Под действием гравитационных сил частицы пыли и газа будут сгущаться и нагреваться. Подобный процесс описывал Кант в своей небулярной гипотезе. Облако может сгущаться и нагреваться миллионы лет. Когда же внутри него температура достигнет величины порядка 10 млн. К, начнутся реакции термоядерного синтеза. Наиболее распространенная из них, вероятно, ‒ реакция слияния ядер атома водорода с образованием ядер атома гелия. Ее начало будет означать рождение новой звезды. Такова одна из моделей происхождения звезд. Таким образом, гравитационное сжатие «включает» термоядерную реакцию.