
- •Трансформаторы. Общие сведения. Принцип работы. Схемы замещения трансформаторов. Области применения. Специальные трансформаторы…………………………………………….81
- •Лекция 1. Составные элементы электрических цепей. Режимы работы электрических цепей
- •1. Элементы электрических цепей
- •1. Резистивный элемент (резистор)
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •4.Схемы замещения источников электрической энергии
- •Литература
- •Контрольные вопросы и задачи
- •Лекция 2 Методы расчета электрических цепей постоянного тока
- •1. Основные определения
- •2. Метод преобразования (свертки) схемы
- •3. Метод законов Кирхгофа
- •4 . Метод контурных токов
- •5. Метод узловых потенциалов
- •6. Метод двух узлов
- •7. Принцип наложения. Метод наложения
- •8. Теорема о взаимности
- •9. Теорема о компенсации
- •10. Теорема о линейных отношениях
- •11. Теорема об эквивалентном генераторе
- •Лекция 3. Активное сопротивление, катушка индуктивности, емкость в цепи переменного тока
- •1. Переменный ток (напряжение) и характеризующие его величины
- •2. Среднее и действующее значения переменного тока и напряжения
- •3. Векторные диаграммы переменных токов и напряжений
- •4. Активное сопротивление, катушка индуктивности, емкость в цепи переменного тока
- •Лекция 4. Магнитные цепи. Коэффициент мощности
- •1. Общие сведения о магнитных цепях
- •1.Общие определения
- •2. Последовательное соединение магнитносвязанных катушек
- •3. Сложная цепь с магнитносвязанными катушками
- •4. Линейный (без сердечника) трансформатор
- •5. Мощность переменного тока
- •Лекция 5. Последовательное, параллельное соединение активно-индуктивного и емкостного сопротивлений в цепи переменного тока
- •Резонанс токов
- •Резонанс напряжений
- •Лекция 6, 7. Трехфазная система напряжений. Соединение нагрузки по схеме «звезда». Соединение нагрузки по схеме «треугольник».
- •1. Трехфазная система
- •2. Способы соединения обмоток трехфазных генераторов
- •5. Способы соединения фаз трехфазных приемников.
- •Измерительные приборы. Аналоговые приборы
- •Измерение параметров электрических цепей
- •Цифровые приборы
- •Датчики параметров неэлектрических величин
- •Лекция 10, 11. Трансформаторы. Общие сведения. Приницп работы. Схемы замещения трансформаторов. Области применения. Специальные трансформаторы. Трансформаторы.
- •П ринцип работы трансформатора.
- •Режимы работы и схемы замещения трансформаторов
- •Режим х.Х.
- •Режим к.З.
- •Рабочий режим.
- •Трехфазные трансформаторы.
- •Конструкция трехфазных трансформаторов.
- •Специальные трансформаторы
- •Лекция 13. Машины постоянного тока Двигатели постоянного тока (дпт)
- •Двигатели независимого возбуждения.
- •Регулирование скорости и пуск дпт от сети.
- •Реверс и тормозные режимы.
- •Двигатели последовательного возбуждения
- •Двигатели смешанного возбуждения.
- •Лекция 14. Машины переменного тока. Асинхронные машины
- •Регулирование скорости ад с короткозамкнутым ротором
- •Ад с фазным ротором
- •Реверс и тормозные режимы ад
- •Лекция 15. Синхронные машины Синхронные машины
- •Лекция 16. Аппараты управления. Общие сведения. Аппараты ручного и автоматического управления Управляющее и контролирующее оборудование
- •Аппараты управления
- •Аппараты ручного управления
- •Аппараты автоматического управления
- •Лекция 17. Полупроводниковые приборы и устройства. Неуправляемые и управляемые выпрямители
- •Биполярные транзисторы
- •Полевые транзисторы
- •Операционные усилители
- •Лекция 18. Электропривод. Составные элементы эп Составные элементы электропривода (эп)
- •Механика электропривода
- •Приведение статических моментов и моментов инерции к одной оси.
- •Лекция 19. Электроснабжение промышленных предприятий Электроснабжение предприятий Основные элементы энергосистем
- •Высоковольтные выключатели
- •Экономия электроэнергии
Резонанс напряжений
Резонанс напряжений возникает в цепи с последовательным включением элементов (рис.5.5)
Известно, что комплексное сопротивление токов цепи определяется выражением.
По определению резонанс в цепи рис.5.5 наступает когда выполнится условие
Отсюда видно, что резонанс в цепи возникает на частоте
Очевидно также, что
,
.
Видим, что полученные выражения полностью соответствуют (5.9) и (5.10). Это подтверждает единство физической сути различных видов резонанса.
Определим ток и напряжение всей цепи , а также падение напряжения на ее отдельных элементах в режиме резонанса.
Так как сопротивление всей цепи в режиме резонанса минимально и равно R то ток в ней максимален и равен
,
(5.17)
а падение напряжения определяется ЭДС источника - Е.
Падение
напряжения на отдельных элементах легко
найти по закону Ома. Так, падение
напряжения на резисторе R
равно
(5.18)
Тривиальный математически результат интересен по физической сути. Все напряжение источника выделяется на одном элементе цепи.
Падение напряжения на индуктивности равно
(5.19)
Величина
(5.20)
называется добротностью и может принимать значение десятков и сотен единиц. Значит, падение напряжения на индуктивности может в десятки и сотни раз превышать ЭДС источника.
Падение напряжения на емкости равно
(5.21)
Так
как
,
то падение напряжения на емкости равно
по величине падению напряжения на
индуктивности, но согласно (5.8) они
противоположны по знаку. Отношение
напряжения на индуктивности или на
емкости в режиме резонанса к току в этом
режиме называют характеристическим
сопротивлением
,
причем
(5.22)
В силу того что
,
рассматриваемый
режим назван резонансом напряжений.
Противофазность напряжений
и
указывает на то, что в цепи происходит
такой же колебательный процесс с частотой
,
как и в параллельном колебательном
контуре.
Здесь также энергия источника затрачивается только на преодоление сопротивления резистора R. Поэтому цепь называется последовательным колебательным контуром.
Завершим
анализ резонанса напряжений разбором
частотной зависимости тока цепи рис.5.5.
и падений напряжений на элементах L
и С от частоты (рис.5.6). На рисунке пунктиром
отмечен график ЭДС. Падение напряжения
на идеальной индуктивности при
равно нулю. С увеличением частоты
сопротивление индуктивности, а значит
и падение напряжения на ней увеличивается.
Когда частота устремляется в бесконечность
сопротивление ХL
также устремляется в бесконечность.
При этом падение напряжения стремится
к Е. Между крайними точками существует
экстремум напряжения
который находится по формуле
(5.23)
Частота, на которой достигается этот максимум определяется выражением
(5.24)
Сопротивление
емкости на частоте
равно бесконечности и значит напряжение
на ее обкладках равно Е. С увеличением
частоты сопротивление ХС
уменьшается, а при
стремится
к нулю. Между крайними точками также
существует экстремум причем
(5.25)
Частота, на которой достигается этот максимум определяется выражением
(5.26)
Так как подкоренное выражение в (5.24) и (5.26) всегда меньше единицы то очевидно, что
Кроме того
.
В силу этих особенностей единственным верным признаком наступления резонанса в цепи является максимум тока, значение которого изменяется с изменением частоты по резонансной кривой.